relative entropy for the finite volume approximation of
play

Relative entropy for the finite volume approximation of hyperbolic - PowerPoint PPT Presentation

Relative entropy for the finite volume approximation of hyperbolic systems H el` ene Mathis Supported by LRC Manon, CEA, UPMC Paris 6 and Universit e de Nantes, LMJL HYP 2012 H el` ene Mathis (LMJL) Relative entropy for hyperbolic


  1. Relative entropy for the finite volume approximation of hyperbolic systems H´ el` ene Mathis Supported by LRC Manon, CEA, UPMC Paris 6 and Universit´ e de Nantes, LMJL HYP 2012 H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  2. Motivations: model adaptation Join work with: C. Canc` es, F. Coquel, E. Godlewski, N. Seguin Simulation of compressible water flows in pressurized water reactor Several models of two-phase flows Local properties of the flow � appropriate model Models linked by asymptotic limits � relaxation ◮ Fine model: complex system of equations, stiff source term ◮ Coarse model: simplified equations Coupling technics at interface Optimal position of the coupling interface ◮ Minimize the use of the fine model (reference solution) ◮ Minimize global error due to coupling Dynamical model adaptation H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  3. Model adaptation, an example Phase transition model in 2D Fine model: thermodynamical equilibrium not reached (Euler equations + mass fraction evolution + closure law) Coarse model: thermodynamical equilibrium (Euler equations + closure law) Legend: blue = liquid, red=gas Fine Adapted Coarse Indicator (blue=fine, red=coarse) Simulation H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  4. Determine an error indicator Error indicator to perform adaptation U f solution of the fine model, U c solution of the coarse model, U h c finite volume approximation of U c Indicator = � U f − U h c � ≤ � U f − U c � + � U c − U h c � c and U h , 0 Indicator ( t ) controlled by U 0 f , U 0 c State of art Scalar case [Kruzhkov 70 ; Kuznetsov 76 ; Lucier 86 ; Bouchut, Perthame 98 ; Kr¨ oner, Ohlberger 00] System case ◮ Chapman-Enskog expansion (adaptation [Mathis, Seguin 11]) Relative entropy [Di Perna 79, Dafermos 05, Tzavaras 05,... ] H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  5. Fine and coarse models Fine model : hyperbolic system with relaxation [Chen, Levermore, Liu 94]  d ∂ α F α ( w ) = 1 t > 0 , x ∈ R d  ∂ t w + � ε R ( w ) ,  ( M f ) α =1 x ∈ R d w ( x , 0) = w 0 ( x ) ,   w = ( u , v ) T ∈ R n , u ∈ R m , n > m F , R smooth enough Stiff source term R : R ( w ) = 0 ⇔ w = w eq ( u ) Map w eq (assumed to be L w eq − Lipschitz continuous) H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  6. Fine and coarse models Coarse model : in the limit ε → 0, hyperbolic system  d t > 0 , x ∈ R d  � ∂ t u + ∂ α g α ( u ) = 0 ,  ( M c ) α =1 x ∈ R d  u ( x , 0) = u 0 ( x ) ,  where g ( u ) = P F ( w eq ( u )) P ∈ M n × m such that ∀ w ∈ R n P R ( w ) = 0 , ∀ w ∈ R n P w = u , (Hyp 1) ∀ u ∈ R m P w eq ( u ) = u , H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  7. Error indicator Error indicator Indicator = � w − w eq ( u h ) � 2 ≤ 2 � w − w eq ( u ) � 2 + 2 L w eq � u − u h � 2 Outline 1 Modeling error estimate � w − w eq ( u ) � ◮ estimate in ε between smooth solutions of ( M f ) and ( M c ), relative entropy, [Tzavaras 06] 2 Numerical error estimate � u − u h � ◮ FV scheme, convergence towards entropy solution, error estimate [Chainais 99 ; Eymard, Gallou¨ et, Herbin 00], relative entropy 3 Conclusion and prospects H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  8. Modeling error estimate: assumptions [Tzavaras 06] Non-degeneracy dim Ker( ∇ w R ( w eq ( u ))) = m (Hyp 2) dim Im( ∇ w R ( w eq ( u ))) = n − m The system ( M f ) is endowed with a β -convex entropy η : R n → R ∇ η ( w ) T ∇ w F ( w ) = ∇ w ξ ( w ) T (Hyp 3) where ξ α : R n → R , α = 1 , . . . , d is the entropy flux The pair η − ξ satisfy d ∂ α ξ α ( w ) = 1 � ∂ t η ( w ) + ε ∇ w η ( w ) ∗ R ( w ) α =1 where ∗ denotes the scalar product in R n H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  9. Modeling error estimate: assumptions [Tzavaras 06] Entropy dissipation ∇ w η ( w ) ∗ R ( w ) ≤ 0 (Hyp 4) Entropy-entropy flux for ( M c ): restriction of η − ξ on { w ∈ R n , R ( w ) = 0 } induces ∇ u η ( u ) T ∇ u g ( u ) = ∇ u ξ ( u ) T (Hyp 5) where g ( u ) = P F ( w eq ( u )) For u ∈ R m regular solution of ( M c ), the pair η − ξ satisfies d � ∂ t η ( u ) + ∂ α ξ α ( u ) = 0 α =1 H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  10. Modeling error estimate Theorem ([Tzavaras 06]) Assume hypothesis (Hyp 1) - (Hyp 5) . Let ( w ε ) be a family of regular solutions of ( M f ) and u a regular solution of ( M c ) on R d × [0 , T ] with initial conditions ( w ε 0 ) and u 0 . Assume that w ε , w eq ( u ε ) and w eq ( u ) are in B w eq ⊂ R n . Assume it exists ν = ν ( w eq ) such that − ( ∇ w η ( w ) − ∇ w η ( w eq ( u ))) ∗ ( R ( w ) − R ( w eq ( u ))) ≥ ν | w − w eq ( u ) | 2 (Hyp 6) for w , w eq ( u ) ∈ B w eq with u = P w. Then for r > 0 it exists A , B , s such that: �� � � | w − w eq ( u ) | 2 dx ≤ A | w ( x , 0) − w eq ( u ( x , 0) | 2 dx + B ε | x | < r | x | < r + st H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  11. Modeling error estimate: relative entropy Let w ∈ R m be a regular solution of ( M f ) Let u ∈ R n be a regular solution of ( M c ) The relative entropy H : R n × R n → R is given by H ( w , w eq ( u )) = η ( w ) − η ( w eq ( u )) − ∇ w η ( w eq ( u )) ∗ ( w − w eq ( u )) Relative entropy flux H α : R n × R n → R Q ( w , w eq ( u )) = ξ ( w ) − ξ ( w eq ( u )) −∇ w η ( w eq ( u )) ∗ ( F ( w ) − F ( w eq ( u ))) Relative entropy positive definite (convexity of η ) H ( w , w eq ( u )) ≥ β 2 | w − w eq ( u ) | 2 H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  12. Modeling error estimate: main lines of the proof Relative entropy identity d ∂ α Q α ( w , w eq ( u )) + 1 � ∂ t H ( w , w eq ( u )) + ε D = J 1 + J 2 α =1 where d � ∇ 2 � � J 1 = − u η ( u ) ∂ α u · g α ( u ) − g α ( u ) − ∇ u g α ( u ) · ( u − u ) α =1 d � ∇ 2 � � J 2 = − u η ( u ) ∂ α u · P F α ( w ) − F α ( w eq ( u )) α =1 D =( ∇ w η ( w ) − ∇ w η ( w eq ( u ))) ∗ ( R ( w ) − R ( w eq ( u ))) H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  13. Modeling error estimate: main lines of the proof Consider the weak form of the relative entropy identity (Kruzhkov procedure) Let r > 0, t > 0, s such that sH + Q x | x | > 0 � t � H ( w , w eq ( u )) dx + 1 � D dxd τ ε | x | < r 0 | x | < r + s ( t − τ ) � t � � ≤ H ( w 0 , w eq ( u 0 )) dx + J 1 + J 2 dxd τ | x | < r + st 0 | x | < r + s ( t − τ ) Use assumption (Hyp 6) and the β − convexity of η Control of the terms | J 1 | and | J 2 | | J 2 | +1 | J 1 | ≤ C ( η, F , w eq , ∂ α u ) | w − w eq ( u ) | 2 ε D ≤ ε C ( η, F , w eq , ∂ α u ) Conclude via a Gronwall Lemma Remark: ∂ α u known a priori (initial data) H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  14. Numerical error estimate Numerical error estimate � u − u h � Scalar case: FV scheme, convergence towards entropy solution, error estimate [Chainais 99 ; Eymard, Gallou¨ et, Herbin 00 ; Kr¨ oner, Ohlberger 00], System case: relative entropy  d  ∂ t u + � ∂ α g α ( u ) = 0  ( M c ) α =1  u ( x , 0) = u 0 ( x )  1 u 0 ∈ L ∞ ( R d ) 2 g Lipschitz continuous 3 Entropy-entropy flux η − ξ , η β − convex H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  15. Finite volume scheme Mesh T h = sup { diam( K ) , K ∈ T } < ∞ ah d ≤ m ( K ) L E : set of interfaces K n KL N ( K ): neighbouring cells of K σ KL Time step : t n = n ∆ t , ∀ n ∈ N Numerical scheme 1 � u 0 K = u 0 m ( K ) K ∆ t � ( S ) u n +1 = u n G KL ( u n K , u n K − L ) K m ( K ) L ∈N K , if x ∈ K , t n ≤ t ≤ t n +1 u h ( x , t ) = u n H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

  16. Numerical flux: assumptions Numerical flux : G KL ∈ C ( R m × R m , R m ) : ( u , v ) → G KL ( u , v ) Lipschitz continuous, conservative, stable under CFL condition, consistant 1 m ( σ KL ) G KL ( u , u ) = g ( u ) · n KL Entropy flux ξ KL ( u , v ), conservative Entropy inequality by interface [Harten, Lax, Van Leer 83 ; Bouchut 04] ξ KL ( u K , u L ) − m ( σ KL ) ξ ( u K ) · n KL ≤ − 1 � � � u K − λ G KL ( u K , u L ) η λ �� � − m ( σ KL ) G ( u K ) · n KL − η ( u K ) Numerical solution : ( u n K ) ∈ O ⊂ R m , O open bounded subset Weak BV estimate [Eymard, Gallou¨ et, Herbin, 00] K ) · n KL | ≤ C WBV � � ∆ t | G KL ( u n K , u n L ) − m ( σ KL ) g ( u n √ h n E H´ el` ene Mathis (LMJL) Relative entropy for hyperbolic systems HYP

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend