math 211 math 211
play

Math 211 Math 211 Lecture #28 Phase Plane Portraits November 2, - PowerPoint PPT Presentation

1 Math 211 Math 211 Lecture #28 Phase Plane Portraits November 2, 2001 2 Procedure to Solve x = A x Procedure to Solve x = A x Find the eigenvalues of A the roots of p ( ) = det( A I ) = 0 For each eigenvalue


  1. 1 Math 211 Math 211 Lecture #28 Phase Plane Portraits November 2, 2001

  2. 2 Procedure to Solve x ′ = A x Procedure to Solve x ′ = A x • Find the eigenvalues of A � the roots of p ( λ ) = det( A − λI ) = 0 • For each eigenvalue λ find the eigenspace � = null( A − λI ) • If λ is an eigenvalue and v is an associated eigenvector, x ( t ) = e λt v is a solution. • Hope that n of these are linearly independent. Return

  3. 3 Planar System x ′ = A x Planar System x ′ = A x � a 11 � x 1 ( t ) a 12 � � A = and x ( t ) = a 21 a 22 x 2 ( t ) • The characteristic polynomial is p ( λ ) = λ 2 − Tλ + D. where T = tr A and D = det A Return Procedure

  4. 4 • The eigenvalues of A are the roots of p ( λ ) = λ 2 − Tλ + D, √ T 2 − 4 D λ = T ± . 2 • Three cases: � 2 distinct real roots if T 2 − 4 D > 0 � 2 complex conjugate roots if T 2 − 4 D < 0 � Double real root if T 2 − 4 D = 0 Return

  5. 5 Procedure in Degenerate Planar Case Procedure in Degenerate Planar Case • Find the (only) eigenvalue λ 1 . • Find an eigenvector v 1 � = 0 . • Find v 2 with ( A − λI ) v 2 = v 1 . � Start with any vector w not a multiple of v 1 � Then ( A − λI ) w = a v 1 with a � = 0 . � Set v 2 = 1 a w . v 2 is not a multiple of v 1 . • x 1 ( t ) = e λt v 1 and x 2 ( t ) = e λt [ v 2 + t v 1 ] form a fundamental set of solutions. Return

  6. 6 Example Example � 1 9 � x ′ = A x where A = − 1 − 5 • p ( λ ) = λ 2 + 4 λ + 4 = ( λ + 2) 2 ; λ = − 2 � 3 � − 3 9 � � • A − λI = ; v 1 = − 1 − 3 1 • Eigenspace has dimension 1, with basis v 1 . • One exponential solution: � − 3 � x 1 ( t ) = e λt v 1 = e − 2 t . 1 Return Procedure

  7. 7 • Second solution � Start with w = (1 , 0) T . � − 1 � � v 2 = − w = 0 • Fundamental set of solutions: � − 3 � x 1 ( t ) = e λt v 1 = e − 2 t 1 x 2 ( t ) = e λt [ v 2 + t v 1 ] � − 1 − 3 t � = e − 2 t . t Return Example Procedure

  8. 8 Examples Examples Solve x ′ = A x , where • � − 2 1 � A = 0 − 2 • � 0 9 � A = − 1 − 6 Procedure

  9. 9 Planar System x ′ = A x Planar System x ′ = A x • Equilibrium points for the system � Set of equilibrium points equals null( A ) . � A nonsingular ⇒ only equilibrium point is 0 . • Can we list the types of all possible equilibrium points for planar linear systems? � We will do the six most important cases. ◮ The other cases are Project #3. � Look at solution curves in the phase plane. Return

  10. 10 Exponential Solutions Exponential Solutions x ( t ) = Ce λt v • The solution curve is a straight half-line through C v . Sometimes called half-line solutions. • If λ > 0 the solution starts at 0 for t = −∞ , and tends to ∞ as t → ∞ . Unstable solution • If λ < 0 the solution starts at ∞ for t = −∞ , and tends to 0 as t → ∞ . Stable solution Return

  11. 11 Distinct Real Eigenvalues Distinct Real Eigenvalues • p ( λ ) = λ 2 − Tλ + D with T 2 − 4 D > 0 . √ √ T 2 − 4 D T 2 − 4 D λ 1 = T − < λ 2 = T + 2 2 • Eigenvectors v 1 and v 2 . General solution x ( t ) = C 1 e λ 1 t v 1 + C 2 e λ 2 t v 2 Return Exponential solution

  12. 12 Saddle Point Saddle Point • λ 1 < 0 < λ 2 • General solution x ( t ) = C 1 e λ 1 t v 1 + C 2 e λ 2 t v 2 • Two stable exponential solutions ( C 2 = 0 ) • Two unstable exponential solutions ( C 1 = 0 ). • C 1 � = 0 and C 2 � = 0 . � As t → ∞ , x ( t ) → ∞ , approaching the half-line through C 2 v 2 . � As t → −∞ , x ( t ) → ∞ , approaching the half-line through C 2 v 1 . Return Real eigenvalues

  13. 13 Nodal Sink Nodal Sink • λ 1 < λ 2 < 0 • General solution x ( t ) = C 1 e λ 1 t v 1 + C 2 e λ 2 t v 2 • Four stable exponential solutions. • All solutions → 0 as t → ∞ . (Stable) � Tangent to C 2 v 2 if C 2 � = 0 . • All solutions → ∞ as t → −∞ . � � to the half line through C 1 v 1 if C 1 � = 0 . Return Real eigenvalues

  14. 14 Nodal Source Nodal Source • 0 < λ 1 < λ 2 • General solution x ( t ) = C 1 e λ 1 t v 1 + C 2 e λ 2 t v 2 • Four unstable exponential solutions. • All solutions → 0 as t → −∞ . � Tangent to C 1 v 1 if C 1 � = 0 . • All solutions → ∞ as t → ∞ . (Unstable) � � to the half line through C 2 v 2 if C 2 � = 0 . Return Real eigenvalues Nodal Sink

  15. 15 Complex Eigenvalues Complex Eigenvalues • p ( λ ) = λ 2 − Tλ + D with T 2 − 4 D < 0 λ = α + iβ and λ = α − iβ. • Eigenvector w = v 1 + i v 2 associated to λ . • Complex solutions z ( t ) = e λt w = e t ( α + iβ ) [ v 1 + i v 2 ] z ( t ) = e λt w = e t ( α − iβ ) [ v 1 − i v 2 ] Return

  16. 16 • Real solutions x 1 ( t ) = Re( z ( t )) = e αt [cos βt · v 1 − sin βt · v 2 ] x 2 ( t ) = Im( z ( t )) = e αt [sin βt · v 1 + cos βt · v 2 ] • General solution x ( t ) = C 1 e αt [cos βt · v 1 − sin βt · v 2 ] + C 2 e αt [sin βt · v 1 + cos βt · v 2 ] Return

  17. 17 Center Center • α = Re( λ ) = 0 • General real solution x ( t ) = C 1 [cos βt · v 1 − sin βt · v 2 ] + C 2 [sin βt · v 1 + cos βt · v 2 ] • Every solution is periodic with period T = 2 π/β. • All solution curves are ellipses. Return

  18. 18 Spiral Sink Spiral Sink • α = Re( λ ) < 0 • General real solution x ( t ) = C 1 e αt [cos βt · v 1 − sin βt · v 2 ] + C 2 e αt [sin βt · v 1 + cos βt · v 2 ] • All solutions spiral into 0 as t → ∞ . Return

  19. 19 Spiral Source Spiral Source • α = Re( λ ) > 0 • General real solution x ( t ) = C 1 e αt [cos βt · v 1 − sin βt · v 2 ] + C 2 e αt [sin βt · v 1 + cos βt · v 2 ] • All solutions spiral into 0 as t → −∞ . Return

  20. 20 Planar Systems Planar Systems � a 11 a 12 � A = a 21 a 22 • Char. polynomial p ( λ ) = λ 2 − Tλ + D . • Eigenvalues √ T 2 − 4 D λ 1 , λ 2 = T ± . 2 Return

  21. 21 • λ 1 & λ 2 are the roots of p ( λ ) , so p ( λ ) = λ 2 − Tλ + D = ( λ − λ 1 )( λ − λ 2 ) = λ 2 − ( λ 1 + λ 2 ) λ + λ 1 λ 2 • T = λ 1 + λ 2 and D = λ 1 λ 2 . • Duality between ( λ 1 , λ 2 ) and ( T, D ) . • Represent systems by location of ( T, D ) in the TD -plane. Return Characteristic polynomial

  22. 22 Trace-Determinant Plane Trace-Determinant Plane • T 2 − 4 D > 0 � ⇒ distinct real eigenvalues λ 1 & λ 2 � D = λ 1 λ 2 < 0 ⇒ Saddle point. � D = λ 1 λ 2 > 0 ⇒ Eigenvalues have the same sign. ◮ T = λ 1 + λ 2 > 0 ⇒ Nodal source. ◮ T = λ 1 + λ 2 < 0 ⇒ Nodal sink. Return Duality

  23. 23 • T 2 − 4 D < 0 ⇒ complex eigenvalues λ = α + iβ and λ = α − iβ. � T = λ + λ = 2 α > 0 ⇒ Spiral source. � T = λ + λ = 2 α < 0 ⇒ Spiral sink. � T = λ + λ = 2 α = 0 ⇒ Center. Return Duality TD plane

  24. 24 Types of Equilibrium Points Types of Equilibrium Points • Generic types � Saddle, nodal source, nodal sink, spiral source, and spiral sink. � All occupy large open subsets of the trace-determinant plane. • Nongeneric types � Center and many others. Occupy pieces of the boundaries between the generic types. Return

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend