nlcertify a tool for formal nonlinear optimization
play

NLCertify : A Tool for Formal Nonlinear Optimization Victor Magron , - PowerPoint PPT Presentation

NLCertify : A Tool for Formal Nonlinear Optimization Victor Magron , Postdoc LAAS-CNRS 18 September 2014 Aric Seminar Lyon y par + b 3 par + b sin ( b ) b 1 b b 1 b 2 b 3 = 500 1 par + par b 2 b 3 par b 2 par b 1 V.


  1. NLCertify : A Tool for Formal Nonlinear Optimization Victor Magron , Postdoc LAAS-CNRS 18 September 2014 Aric Seminar Lyon y par + b 3 √ par + b �→ sin ( b ) b 1 b b 1 b 2 b 3 = 500 1 par + par − b 2 b 3 par − b 2 par − b 1 V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 1 / 44

  2. Errors and Proofs Mathematicians want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935. 130 pages of errors! (Euler, Fermat, Sylvester, . . . ) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 2 / 44

  3. Errors and Proofs Possible workaround: proof assistants C OQ (Coquand, Huet 1984) H OL - LIGHT (Harrison, Gordon 1980) Built in top of OC AML V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 2 / 44

  4. Computer Science and Mathematics Tool: Formal Bounds for Global Optimization Collaboration with: Benjamin Werner (LIX Polytechnique) Stéphane Gaubert (Maxplus Team CMAP/INRIA Polytechnique) Xavier Allamigeon (Maxplus Team) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 3 / 44

  5. Complex Proofs Complex mathematical proofs / mandatory computation K. Appel and W. Haken , Every Planar Map is Four-Colorable, 1989. T. Hales, A Proof of the Kepler Conjecture, 1994. V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 4 / 44

  6. From Oranges Stack... Kepler Conjecture (1611): π The maximal density of sphere packings in 3D-space is √ 18 Face-centered cubic Packing Hexagonal Compact Packing V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 5 / 44

  7. ...to Flyspeck Nonlinear Inequalities The proof of T. Hales (1998) contains mathematical and computational parts Computation: check thousands of nonlinear inequalities Robert MacPherson, editor of The Annals of Mathematics: “[...] the mathematical community will have to get used to this state of affairs.” F lys p ec k [Hales 06]: F ormal P roof of K epler Conjecture V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 6 / 44

  8. ...to Flyspeck Nonlinear Inequalities The proof of T. Hales (1998) contains mathematical and computational parts Computation: check thousands of nonlinear inequalities Robert MacPherson, editor of The Annals of Mathematics: “[...] the mathematical community will have to get used to this state of affairs.” F lys p ec k [Hales 06]: F ormal P roof of K epler Conjecture Project Completion on 10 August by the Flyspeck team!! V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 6 / 44

  9. ...to Flyspeck Nonlinear Inequalities Nonlinear inequalities: quantified reasoning with “ ∀ ” ∀ x ∈ K , f ( x ) � 0 NP-hard optimization problem V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 7 / 44

  10. A “Simple” Example In the computational part: Multivariate Polynomials: ∆ x : = x 1 x 4 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) + x 2 x 5 ( x 1 − x 2 + x 3 + x 4 − x 5 + x 6 ) + x 3 x 6 ( x 1 + x 2 − x 3 + x 4 + x 5 − x 6 ) − x 2 ( x 3 x 4 + x 1 x 6 ) − x 5 ( x 1 x 3 + x 4 x 6 ) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 8 / 44

  11. A “Simple” Example In the computational part: Semialgebraic functions: composition of polynomials with | · | , √ , + , − , × , /, sup, inf, . . . p ( x ) : = ∂ 4 ∆ x q ( x ) : = 4 x 1 ∆ x � r ( x ) : = p ( x ) / q ( x ) 2 + 1.6294 − 0.2213 ( √ x 2 + √ x 3 + √ x 5 + √ x 6 − 8.0 ) + l ( x ) : = − π 0.913 ( √ x 4 − 2.52 ) + 0.728 ( √ x 1 − 2.0 ) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 8 / 44

  12. A “Simple” Example In the computational part: Transcendental functions T : composition of semialgebraic functions with arctan, exp, sin, + , − , × , . . . V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 8 / 44

  13. A “Simple” Example In the computational part: Feasible set K : = [ 4, 6.3504 ] 3 × [ 6.3504, 8 ] × [ 4, 6.3504 ] 2 Lemma 9922699028 from Flyspeck: � p ( x ) � ∀ x ∈ K , arctan + l ( x ) � 0 � q ( x ) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 8 / 44

  14. Existing Formal Frameworks Formal proofs for Global Optimization: Bernstein polynomial methods [Zumkeller’s PhD 08] SMT methods [Gao et al. 12] Interval analysis and Sums of squares V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 9 / 44

  15. Existing Formal Frameworks Interval analysis Certified interval arithmetic in C OQ [Melquiond 12] Taylor methods in HOL Light [Solovyev thesis 13] Formal verification of floating-point operations robust but subject to the Curse of Dimensionality V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 9 / 44

  16. Existing Formal Frameworks Lemma 9922699028 from Flyspeck: ∂ 4 ∆ x � � √ 4 x 1 ∆ x ∀ x ∈ K , arctan + l ( x ) � 0 Dependency issue using Interval Calculus: One can bound ∂ 4 ∆ x / √ 4 x 1 ∆ x and l ( x ) separately Too coarse lower bound: − 0.87 Subdivide K to prove the inequality K 3 K K 0 K 1 K 4 = ⇒ K 2 V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 9 / 44

  17. Existing Formal Frameworks Sums of squares techniques Formalized in H OL - LIGHT [Harrison 07] C OQ [Besson 07] Precise methods but scalibility and robustness issues (numerical) powerful: global optimality certificates without branching but not so robust: handles moderate size problems Restricted to polynomials V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 9 / 44

  18. Existing Formal Frameworks Approximation theory: Chebyshev/Taylor models mandatory for non-polynomial problems hard to combine with SOS techniques (degree of approximation) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 9 / 44

  19. Existing Formal Frameworks Can we develop a new approach with both keeping the respective strength of interval and precision of SOS? Proving Flyspeck Inequalities is challenging: medium-size and tight V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 9 / 44

  20. New Framework (in my PhD thesis) Certificates for lower bounds of Nonlinear optimization using: Moment-SOS hierarchies Maxplus approximation (Optimal Control) Verification of these certificates inside C OQ V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 10 / 44

  21. New Framework (in my PhD thesis) Software Implementation NLCertify : https://forge.ocamlcore.org/projects/nl-certify/ 15 000 lines of OC AML code 4000 lines of C OQ code V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 10 / 44

  22. Introduction Moment-SOS relaxations Semialgebraic Maxplus Optimization Formal Nonlinear Optimization

  23. Polynomial Optimization Problems Semialgebraic set K : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } p ∗ : = min x ∈ K p ( x ) : NP hard Sums of squares Σ [ x ] e.g. x 2 1 − 2 x 1 x 2 + x 2 2 = ( x 1 − x 2 ) 2 � � σ 0 ( x ) + ∑ m Q ( K ) : = j = 1 σ j ( x ) g j ( x ) , with σ j ∈ Σ [ x ] V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 11 / 44

  24. Polynomial Optimization Problems Archimedean module The set K is compact and the polynomial N − � x � 2 2 belongs to Q ( K ) for some N > 0. Assume that K is a box: product of closed intervals Normalize the feasibility set to get K ′ : = [ − 1, 1 ] n K ′ : = { x ∈ R n : g 1 : = 1 − x 2 1 � 0, · · · , g n : = 1 − x 2 n � 0 } n − � x � 2 2 belongs to Q ( K ′ ) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 12 / 44

  25. Convexification and the K Moment Problem Borel σ -algebra B (generated by the open sets of R n ) M + ( K ) : set of probability measures supported on K . If µ ∈ M + ( K ) then 1 µ : B → [ 0, 1 ] , µ ( ∅ ) = 0, µ ( R n ) < ∞ 2 µ ( � i B i ) = ∑ i µ ( B i ) , for any countable ( B i ) ⊂ B 3 � K µ ( d x ) = 1 supp ( µ ) is the smallest set K such that µ ( R n \ K ) = 0 V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 13 / 44

  26. Convexification and the K Moment Problem � p ∗ = inf x ∈ K p ( x ) = K p d µ inf µ ∈M + ( K ) V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 13 / 44

  27. Convexification and the K Moment Problem Let ( x α ) α ∈ N n be the monomial basis Definition A sequence y has a representing measure on K if there exists a finite measure µ supported on K such that � ∀ α ∈ N n . K x α µ ( d x ) , y α = V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 13 / 44

  28. Convexification and the K Moment Problem L y ( q ) : q ∈ R [ x ] �→ ∑ α q α y α Theorem [Putinar 93] Let K be compact and Q ( K ) be Archimedean. Then y has a representing measure on K iff L y ( σ ) � 0 , L y ( g j σ ) � 0 , ∀ σ ∈ Σ [ x ] . V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 13 / 44

  29. Lasserre’s Hierarchy of SDP relaxations Moment matrix M ( y ) u , v : = L y ( u · v ) , u , v monomials Localizing matrix M ( g j y ) associated with g j M ( g j y ) u , v : = L y ( u · v · g j ) , u , v monomials V. Magron NLCertify : A Tool for Formal Nonlinear Optimization 14 / 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend