nic12 r process workshop 04 05 august 2012 are core
play

NIC12 r-process workshop 04 - 05 August 2012 Are Core-Collapse - PowerPoint PPT Presentation

R NIC12 r-process workshop 04 - 05 August 2012 Are Core-Collapse Supernovae still possible sites for the r-process?


  1. 「重力崩壊型超新星は、(まだ) R過程サイトの天体サイト候補なのか?」 (西村 信哉) NIC12 r-process workshop 04 - 05 August 2012 “Are Core-Collapse Supernovae still possible sites for the r-process?” Nobuya Nishimura

  2. heavy element nucleosynthesis beyond iron RIKEN RIBF Website Solar system abundances neutron → proton → neutron capture s -element r -element p -element ~ 1% by not neutron capture Anders & Grevesse (1989)

  3. Where are the astronomical sites? PNS extremely neutron rich matter mild neutron + high entropy BH formation prompt explosion r-process? r-process? r-process? r-process? BH NS binaries massive stars compact star SN SN merger compact star delayed explosion SN neutrino-driven wind (BH+disk) collapsar models main site?

  4. Newtrino Driven Wind self-consistent simulation of NDW based on NDW’s are proton-rich proton rich rather than neutron-rich state of the art hydrodynamic simulation ( in 1D: spherical symmetry ) Fischer et al. 2010 progenitor: 10.8 M  progenitor: 8.8 M  0.6 0.6 0.5 0.5 e e Electron Fraction, Y Electron Fraction, Y 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 Time After Bounce [s] Time After Bounce [s] e − + p � n + ν e , e + + n � p + ν e , e − + � A , Z � � � A , Z − 1 � + ν e ,

  5. SN simulation & nucleosynthesis • Y e > 0.4 ( 2D model ); weak r-process ( Wanajo 2009, 2011 ) ( Wanajo 2011 ) • successful explosion models ( both 1D and 2D ) • Y e > 0.48 ( Fujimoto et al. 2011 ) • ( ONeMg stars ) SNe • normal SNe via neutrino heating ( > 10M  ) ~8 M  (1D&2D) > 10 M  (2D)( Fujimoto 2011 ) 1 5 Y e, min = 0.466 1D 2D 4 0.1 mass [10 -3 solar] Y e, min = 0.404 3 m/M sun 0.01 2 0.001 1 0 1e-04 0.40 0.45 0.50 0.55 0.46 0.48 0.50 0.52 0.54 Y e Ye (10 , 000 km )

  6. The Core-Collapse Supernova itself is no longer the r-process site? • quark-hadron phase transition → Quark/Hybrid stars • MHD Jet supernova (Strong Mag. fields) → Magnetars both are explosion mechanisms avoiding neutrino heating (= destroy neutrons) extra-scenarios are still certain candidate

  7. Basel GSI Darmstadt F.-K. Thielemann M. Hempel R. Käppeli T. Rauscher C. Winteler “Nucleosynthesis in core-collapse supernova explosions triggered by Quark-Hadron phase transition” Nishimura et al., ApJ in press ( arXiv: 1112.5684 ) collaborators T. Fischer G. Martínez-Pinedo C. Frölich ( North Carolina ) I. Sagert ( Michigan )

  8. CC-SN via quark-hadron phase transition collapse neutron stars or magnetars Quark/Hybrid stars QCD phase transition neutrino or MHD effect energy release from the proto-neutron star standard ( disadvantage to r-proc. )

  9. SNe via the quark-hadron phase transition blue:ν e red : ν e green : ν μ/τ Dasgupta et al. PRD 81 (2010) • EOS:Shen EOS + MIT bag model • GR-hydro. + neutrino transport Sagert et al. (2009)、Fischer et al. (2011) after the normal core-bounce : quark-hadron phase transition occurs 5 1.2 x 10 0.8 Velocity [km/s] 0.4 0 − 0.4 − 0.8 53 erg/s] 53 erg/s] 1 2 3 10 10 10 1 Radius [km] Luminosity [10 1 Luminosity [10 10 5 0 0.255 0.26 0.265 Time after bounce [s] 10 4 0 radius [km] rms Energy [MeV] 30 10 3 25 20 10 2 15 10 1 10 0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 Time after bounce [s] time after bounce [s]

  10. the explosion model prompt neutrino driven wind 10 5 10 4 radius [km] 10 3 10 2 10 1 0 1 2 3 4 time after bounce [s]

  11. ejection process & neutron richness (MPA group) neutrino absorption Kitaura et al. 2006 10 5 0.6 0.5 10 4 0.4 radius [km] 10 3 Y e 0.3 0.2 10 2 0.1 10 1 0 0 1 2 3 4 0 1 2 3 4 time after bounce [s] time after bounce [s] ONeMg( 8 M  )

  12. entropy & Y e : the end of NSE ( T = 9 GK ) mass, M # [10 -2 M ⊙ ] 0.209 0.217 1.482 90 0.60 entropy Y e 80 electron fraction, Y e,NSE entropy, s NSE [k B ] 70 0.50 60 NDW delayed prompt 50 0.40 40 30 0.30 20 40 60 80 100 120 mass zone #

  13. the final abundances: total ejecta each zone mass, M # [10 -2 M ⊙ ] 0.209 0.217 1.482 90 0.60 entropy Y e 80 electron fraction, Y e,NSE entropy, s NSE [k B ] 70 0.50 10 2 60 NDW delayed prompt result 50 0.40 solar 40 10 1 30 0.30 20 40 60 80 100 120 abundance mass zone # 10 0 10 -1 NDW -3 delayed abundance, log 10 Y A prompt -4 10 -2 -5 50 70 90 110 130 mass number -6 -7 -8 -9 40 80 120 160 200 mass number, A

  14. final abundances (represented) : each zone neutrino outer “delayed” inner driven wind “prompt” mass number, A 10 50 90 130 10 50 90 130 10 50 90 130 0 0 #015 #017 #019 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 0 0 #020 #040 #045 -1 -1 -2 -2 abundance, log 10 X A abundance, log 10 X A -3 -3 -4 -4 -5 -5 -6 -6 0 0 #050 #051 #060 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 0 0 #070 #080 #120 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 10 50 90 130 10 50 90 130 10 50 90 130 mass number, A

  15. final abundances: neutrino driven winds A < 85 elements are produced via νp-process ν p-proc. without overproduction, log 10 X/X ⊙ 3 2 1 0 30 40 50 60 70 80 90 mass number, A

  16. over 10% reductions are becoming physical uncertainties: Y e unphysical for current model 1 + p cor � � Y e , cor = 0 . 5 + ( Y e − 0 . 5) × 100 electron fraction, Y e electron fraction, Y e 0.20 0.30 0.40 0.50 0.20 0.30 0.40 0.50 0 0 Y e (standard) Y e - 10% mass fraction mass fraction -1 -1 -2 -2 -3 -3 Y e - 20% Y e - 30% mass fraction mass fraction -1 -1 -2 -2 -3 -3 0.20 0.30 0.40 0.50 0.20 0.30 0.40 0.50 electron fraction, Y e electron fraction, Y e

  17. Y e uncertainties with observation Metal poor stars ( weak r-process ) solar system ( strong r-process ) 40 80 120 160 200 -2 standard p cor = 10 p cor = 30 p cor = 40 -3 solar abundance, log 10 Y A -4 -5 -6 standard 0 p cor = 10 p cor = 30 -7 p cor = 40 abundance, log 10 Y Z -1 HD122563 NDW -2 -3 delayed abundance, log 10 Y A prompt -4 -3 -5 -4 -6 -7 -5 -8 30 40 50 60 70 80 atomic number, Z -9 40 80 120 160 200 mass number, A

  18. conclusion → need different model ( multi-D, progenitor, EoS etc. ) • r-process nucleosynthesis • reproduce A~110 r-element ( “weak” r-process ) • 2 nd peak is the limit within the physical uncertainty • “strong” r-process require 30% decrease of Y e ‘s • neutrino driven wind • similar environment to normal CC-SNe • A ~ 90 proton-rich isotopes ( νp-process )

  19. Jet-like SN induced by Magnetic fields jet/hypernova image mag. field B ~ 10 15 G • neutron stars have strong magnetic fields Zhang (2000) APJL • Hypernovae • GRB central engine • Jet-like Explosions • magnetar : ~ 10 15 G ( ~ 1 % of the neutron stars ) • neutron stars ( pulsars ) : ~ 10 12 G 16 14 12 -1 0 1

  20. MHD “Jet” supernova explosion : • 2D Newtonian without neutrino • MHD-SN: Nishimura et al. 2006 • “Collapsar model” ( BH + disk ): Fujimoto et al. ( 2007, 2008 ) • 2D Relativity and neutrino cooling: - explosion model: Takiwaki et al. 2009 - nucleosynthesis: Nishimura et al. (2010, 2012 prep ) Nishimura 2010 Takiwaki 2009

  21. Winteler et al. ApJL 2012; ( Basel collaboration ) The first r-proc. study based on 3D MHD models green : no neutrino red : includes neutrino M ej = 0.672 x 10 -2 M  10 − 2 Ejected Mass [M � ] 10 − 3 10 − 4 10 − 5 10 − 6 10 − 7 60 80 100 120 140 160 180 200 220 240 Mass Number

  22. The first r-proc. study based on 3D MHD models • long-term simulations • systematic survey of wide range of mag. and rot. • weak initial mag. field rot. • detailed micro-physics (neutrino, EOS and mag. fields, etc.) • detailed macro-physics (magneto-rotational instabilities) • relation to (optical) observation • large breaking of axis-symmetry • different rotational and mag. axis ... • ... In the context of r-proc. study (and also explosion mechanism), there are still a lot of open questions. long-term simulations based on wider range of initial conditions under axis-symmetry. (2D hydro. with rot. and mag. fields)

  23. MHD “Jet” supernova explosion : Nishimura at al. (2012 prep.) based on MHD-SN model by Takiwaki 2009 ejected r-elem. mass ( typically ) M r-elem. ~ 10 -3 to 10 -2 M  movie

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend