neurons nerve cells
play

Neurons (nerve cells) Faculty of Science The stochastic - PowerPoint PPT Presentation

u n i v e r s i t y o f c o p e n h a g e n u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Neurons (nerve cells) Faculty of Science The stochastic Morris-Lecar neuron model embeds a


  1. u n i v e r s i t y o f c o p e n h a g e n u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Neurons (nerve cells) Faculty of Science The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings Aarhus, 2013 = ⇒ • Susanne Ditlevsen Cindy Greenwood Patrick Jahn Rune Berg April, 2013 Slide 1/30 Slide 2/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Leaky Integrate-and-Fire model d X t = µ ( X t ) d t + σ ( X t ) d W ( t ) ; X 0 = x 0 X t : membrane potential at time t after a spike x 0 : initial voltage (the reset value following a spike) X(t) An action potential (a spike) is produced when the S membrane voltage X t exceeds a firing threshold S ( t ) = S > X (0) = x 0 After firing the process is reset to x 0 . The interspike x0 interval T is identified with the first-passage time of the T T threshold, time T = inf { t > 0 : X t ≥ S } . Slide 3/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 4/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013

  2. u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Two commonly used Leaky Two commonly used Leaky Integrate-and-Fire neuron models (I) Integrate-and-Fire neuron models (II) The Ornstein-Uhlenbeck process: The Feller process (also CIR or square root process): � � − X t � − X t − V I � � d X t = τ + µ d t + σ d W t ; X 0 = x 0 . d( X t − V I ) = + µ d t + σ X t − V I d W t ; τ X 0 = x 0 ≥ V I . where X t : membrane potential at time t after a spike where τ : membrane time constant, reflects spontaneous V I : inhibitory reversal potential voltage decay ( > 0) and µ : characterizes constant neuronal input σ 2 2 µ ≥ σ : characterizes erratic neuronal input x 0 : initial voltage (the reset value following a spike) Slide 5/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 6/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Intracellular recording of membrane Spike generation potential (b) measured membrane voltage, V(t) 7 6 standard deviation 5 0 4 3 −50 2 1 0 500 0 time (ms) −10 −5 0 5 10 time (ms) Slide 7/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 8/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013

  3. u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Spike generation Estimation of spike intensity A Global Jump Diffusion Model (a) (b) ● ● 1 −2 ● τ ( X t )( a + g ( t ) − X t ) dt + σ ( X t ) dW t +( x ∗ − X t − ) µ ( X t − , dt ) , dX t = ● ● ● ● −3 0.2 ● ● ) ( 1 ms ) −4 λ ) ) ( λ ● log ( where µ ( X t − , dt ) is a Poisson random measure with ● λ ( ● −5 ● ● λ 0.1 intensity measure λ ( X t − ) dt . ● −6 ● ● ● ● Estimator: ● ● −7 ● ● ● ● ● ● 0 ● ● ● ● ● � l j =1 1 [ x − h 2 ] ( Y s j ) −55 −50 −45 −55 −50 −45 2 , x + h ˆ x (mV) x (mV) λ ( x ) := , � M i =1 ∆ 1 [ x − h 2 ] ( Y i ) 2 , x + h Final estimate: � x − ( − 38 . 25) � ˆ λ ( x ) = exp (15 . 3 + 0 . 4 x ) = exp 2 . 5 Slide 9/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 10/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s The Morris Lecar model 20 mV 1 dV t = C ( − g Ca m ∞ ( V t )( V t − V Ca ) − g K W t ( V t − V K ) data − g L ( V t − V L ) + I ) dt = ( α ( V t )(1 − W t ) − β ( V t ) W t ) dt dW t with the auxiliary functions given by model � � v − V 1 �� 1 m ∞ ( v ) = 1 + tanh 2 V 2 1 � v − V 3 � � � v − V 3 �� α ( v ) = 2 φ cosh 1 + tanh 9.0 9.1 9.2 9.3 9.4 9.5 2 V 4 V 4 time (s) 1 � v − V 3 � � � v − V 3 �� β ( v ) = 2 φ cosh 1 − tanh 2 V 4 V 4 Slide 11/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 12/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013

  4. u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s (A) normalized conductance W t 0.5 20 0.4 membrane voltage, V(t) 0 0.3 −20 0.2 −40 ● 0.1 −40 −20 0 20 40 0 200 400 600 800 1000 membrane voltage V t time Slide 13/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 14/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s The stochastic Morris Lecar model 0.5 1 dV t = C ( − g Ca m ∞ ( V t )( V t − V Ca ) − g K W t ( V t − V K ) normalized conductance, W(t) 0.4 − g L ( V t − V L ) + I ) dt 0.3 dW t = ( α ( V t )(1 − W t ) − β ( V t ) W t ) dt � 0.2 2 α ( V t ) β ( V t ) + σ α ( V t ) + β ( V t ) W t (1 − W t ) dB t ● 0.1 −40 −20 0 20 40 membrane voltage, V(t) Slide 15/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013 Slide 16/30— Susanne Ditlevsen — The stochastic Morris-Lecar neuron model embeds a one-dimensional diffusion and its first-passage-time crossings — April, 2013

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend