neural fields finite dimensional approximation large
play

Neural Fields, Finite-Dimensional Approximation, Large Deviations, - PowerPoint PPT Presentation

Neural Fields, Finite-Dimensional Approximation, Large Deviations, and SDE Continuation Christian Kuehn Vienna University of Technology Outline Part 1: Neural Fields (joint work with Martin Riedler , Linz/Vienna): 1. Neural Fields - Amari-type


  1. Neural Fields, Finite-Dimensional Approximation, Large Deviations, and SDE Continuation Christian Kuehn Vienna University of Technology

  2. Outline Part 1: Neural Fields (joint work with Martin Riedler , Linz/Vienna): 1. Neural Fields - Amari-type 2. Galerkin Approximation 3. Large Deviation Principle(s) Part 2: SDE Continuation 1. Numerical Continuation 2. Extension to SODEs 3. Calculating Kramers’ Law 4. Extension to SPDEs

  3. Neural Fields Amari-type neural field model: � � � d U t ( x ) = − α U t ( x ) + w ( x , y ) f ( U t ( y )) d y d t + ε d W t ( x ) . B

  4. Neural Fields Amari-type neural field model: � � � d U t ( x ) = − α U t ( x ) + w ( x , y ) f ( U t ( y )) d y d t + ε d W t ( x ) . B Ingredients: ◮ B ⊂ R d bounded closed domain. Hilbert space X = L 2 ( B ). ◮ ( x , t ) ∈ B × [0 , T ], u = u ( x , t ) ∈ R , α > 0, 0 < ε ≪ 1.

  5. Neural Fields Amari-type neural field model: � � � d U t ( x ) = − α U t ( x ) + w ( x , y ) f ( U t ( y )) d y d t + ε d W t ( x ) . B Ingredients: ◮ B ⊂ R d bounded closed domain. Hilbert space X = L 2 ( B ). ◮ ( x , t ) ∈ B × [0 , T ], u = u ( x , t ) ∈ R , α > 0, 0 < ε ≪ 1. ◮ w : B × B → R kernel, modelling neural connectivity. ◮ f : R → (0 , + ∞ ) gain function, modelling neural input.

  6. Neural Fields Amari-type neural field model: � � � d U t ( x ) = − α U t ( x ) + w ( x , y ) f ( U t ( y )) d y d t + ε d W t ( x ) . B Ingredients: ◮ B ⊂ R d bounded closed domain. Hilbert space X = L 2 ( B ). ◮ ( x , t ) ∈ B × [0 , T ], u = u ( x , t ) ∈ R , α > 0, 0 < ε ≪ 1. ◮ w : B × B → R kernel, modelling neural connectivity. ◮ f : R → (0 , + ∞ ) gain function, modelling neural input. ◮ Q : X → X trace-class, non-negative symmetric operator: eigenvalues λ 2 i ∈ R , eigenfunctions v i . ◮ W t ( x ) := � ∞ i =1 λ i β i β i t v i ( x ) , t iid Brownian motions.

  7. Existence and Regularity Assumptions: ◮ Kg ( x ) := � B w ( x , y ) g ( y ) d y is a compact self-adjoint operator on L 2 ( B ). ◮ F ( g )( x ) := f ( g ( x )) is a Lipschitz continuous Nemytzkii operator on L 2 ( B ). Neural field as evolution equation d U t = [ − α U t + KF ( U t )] d t + ε d W t .

  8. Existence and Regularity Assumptions: ◮ Kg ( x ) := � B w ( x , y ) g ( y ) d y is a compact self-adjoint operator on L 2 ( B ). ◮ F ( g )( x ) := f ( g ( x )) is a Lipschitz continuous Nemytzkii operator on L 2 ( B ). Neural field as evolution equation d U t = [ − α U t + KF ( U t )] d t + ε d W t . (daPrato-Zabczyk92) ⇒ Mild solution u ∈ C ([0 , T ] , L 2 ( B )) � t � t e − α ( t − s ) d W s . e − α ( t − s ) KF ( U s ) d s + ε U t = e − α t U 0 + 0 0

  9. Existence and Regularity Assumptions: ◮ Kg ( x ) := � B w ( x , y ) g ( y ) d y is a compact self-adjoint operator on L 2 ( B ). ◮ F ( g )( x ) := f ( g ( x )) is a Lipschitz continuous Nemytzkii operator on L 2 ( B ). Neural field as evolution equation d U t = [ − α U t + KF ( U t )] d t + ε d W t . (daPrato-Zabczyk92) ⇒ Mild solution u ∈ C ([0 , T ] , L 2 ( B )) � t � t e − α ( t − s ) d W s . e − α ( t − s ) KF ( U s ) d s + ε U t = e − α t U 0 + 0 0 Lemma (K./Riedler, 2013) v i Lipschitz with constants L i and for some ρ ∈ (0 , 1) � ∞ � � ∞ � � � � � i L 2 ρ � λ 2 i v i ( x ) 2 � λ 2 i | v i ( x ) | 2(1 − ρ ) sup � < ∞ , sup � < ∞ � � � � � � � � x ∈B x ∈B � � i =1 i =1 ⇒ u ∈ C ([0 , T ] , C ( B )) .

  10. Galerkin Approximation Spectral representation of solution: ∞ � u i U t ( x ) = t v i ( x ) . i =1

  11. Galerkin Approximation Spectral representation of solution: ∞ � u i U t ( x ) = t v i ( x ) . i =1 Take L 2 -inner product with v i in neural field model � � � d U t , v i � = − α � U t , v i � + � KF ( U t ) , v i � d t + ε � d W t , v i � , ⇒ d u i − α u i t + ( KF ) i ( u 1 t , u 2 d t + ελ i d β i � � = t , . . . ) t . t

  12. Galerkin Approximation Spectral representation of solution: ∞ � u i U t ( x ) = t v i ( x ) . i =1 Take L 2 -inner product with v i in neural field model � � � d U t , v i � = − α � U t , v i � + � KF ( U t ) , v i � d t + ε � d W t , v i � , ⇒ d u i − α u i t + ( KF ) i ( u 1 t , u 2 d t + ελ i d β i � � = t , . . . ) t . t where   ∞ �� � � � u j ( KF ) i ( u 1 t , u 2 t , . . . ) := f t v j ( x ) w ( x , y ) v i ( y ) dy d x   B B j =1

  13. Approximation Accuracy Theorem (K./Riedler, 2013) For all T > 0 N →∞ sup t ∈ [0 , T ] � U t − U N lim t � L 2 ( B ) = 0 a . s .

  14. Approximation Accuracy Theorem (K./Riedler, 2013) For all T > 0 N →∞ sup t ∈ [0 , T ] � U t − U N lim t � L 2 ( B ) = 0 a . s . If “regularity-lemma” conditions hold and N →∞ � U 0 − P N U 0 � C ( B ) = 0 U 0 ∈ C ( B ) such that lim then N →∞ sup t ∈ [0 , T ] � U t − U N lim t � C ( B ) = 0 a . s . Proof. Lengthy calculation using a technique by Bl¨ omker/Jentzen (SINUM 2013).

  15. Large Deviations Principle (LDP) Example: Stochastic ordinary differential equation d u t = g ( u t ) d t + ε G ( u t ) d β t . where ◮ u t ∈ R N , g : R N → R N , G : R N → R N × k , t ) T vector of k iid Brownian motions, ◮ β t = ( β 1 t , . . . , β k ◮ u 0 ∈ D ⊂ R N .

  16. Large Deviations Principle (LDP) Example: Stochastic ordinary differential equation d u t = g ( u t ) d t + ε G ( u t ) d β t . where ◮ u t ∈ R N , g : R N → R N , G : R N → R N × k , t ) T vector of k iid Brownian motions, ◮ β t = ( β 1 t , . . . , β k ◮ u 0 ∈ D ⊂ R N . Goal : Estimate first-exit time τ ε D := inf { t > 0 : u t = u ε t �∈ D} .

  17. An Abstract Theorem ◮ X := C 0 ([0 , T ] , R N ) = { φ ∈ C ([0 , T ] , R N ) : φ (0) = u 0 } . 1 := { φ : [0 , T ] → R N : φ absolutely continuous, φ ′ ∈ L 2 , φ (0) = 0 } . ◮ H N ◮ Diffusion matrix D ( u ) := G ( u ) T G ( u ) ∈ R N × N positive definite.

  18. An Abstract Theorem ◮ X := C 0 ([0 , T ] , R N ) = { φ ∈ C ([0 , T ] , R N ) : φ (0) = u 0 } . 1 := { φ : [0 , T ] → R N : φ absolutely continuous, φ ′ ∈ L 2 , φ (0) = 0 } . ◮ H N ◮ Diffusion matrix D ( u ) := G ( u ) T G ( u ) ∈ R N × N positive definite. Theorem (Freidlin, Wentzell) The SODE satisfies an LDP ε → 0 ε 2 ln P (( u ε − inf Γ o I ≤ lim inf t ) t ∈ [0 , T ] ∈ Γ) ≤ ε 2 ln P (( u ε ≤ lim sup t ) t ∈ [0 , T ] ∈ Γ) ≤ − inf I . ¯ ε → 0 Γ for any measurable set of paths Γ ⊂ X with rate function � 1 � T t − g ( φ t )) T D ( φ t ) − 1 ( φ ′ 0 ( φ ′ φ ∈ u 0 + H N t − g ( φ t )) dt , 1 , 2 I ( φ ) = + ∞ otherwise.

  19. Arhennius-Eyring- Kramers’ Formula ◮ Gradient structure and additive noise d u t = −∇ V ( u t ) d t + ε Id d β t . ◮ V has precisely two local minima u ∗ ± , single saddle point u ∗ s . ◮ Hessian ∇ 2 V ( u ∗ s ) at saddle has eigenvalues ρ 1 ( u ∗ s ) < 0 < ρ 2 ( u ∗ s ) < · · · < ρ N ( u ∗ s ) .

  20. Arhennius-Eyring- Kramers’ Formula ◮ Gradient structure and additive noise d u t = −∇ V ( u t ) d t + ε Id d β t . ◮ V has precisely two local minima u ∗ ± , single saddle point u ∗ s . ◮ Hessian ∇ 2 V ( u ∗ s ) at saddle has eigenvalues ρ 1 ( u ∗ s ) < 0 < ρ 2 ( u ∗ s ) < · · · < ρ N ( u ∗ s ) . Theorem (Kramers’ Formula) Mean first-passage u ∗ − to u ∗ + obeys: � | det( ∇ 2 V ( u ∗ 2 π s )) | − )) e 2( V ( u ∗ s ) − V ( u ∗ − )) /ε 2 . E [ τ u ∗ + } ] ∼ − → u ∗ | ρ 1 ( u ∗ det( ∇ 2 V ( u ∗ s ) |

  21. Back to Neural Fields... Kramers’ Formula and LDP Observations (K./Riedler, 2013) ◮ From [Laing/Troy03,Enulescu/Bestehorn07] ε = 0 ⇒ neural field has energy-structure. Let g := f − 1 , P ( x , t ) = f ( U ( x , t )) . 1 ∂ t P ( x , t ) = − g ′ ( P ( x , t )) ∇ E [ P ( x , t )] .

  22. Back to Neural Fields... Kramers’ Formula and LDP Observations (K./Riedler, 2013) ◮ From [Laing/Troy03,Enulescu/Bestehorn07] ε = 0 ⇒ neural field has energy-structure. Let g := f − 1 , P ( x , t ) = f ( U ( x , t )) . 1 ∂ t P ( x , t ) = − g ′ ( P ( x , t )) ∇ E [ P ( x , t )] . But, there are problems for ε > 0 ⇒ ◮ Change-of-variable ⇒ multiplicative noise. ◮ Space-time dependent factor 1 / g ′ ( P ( x , t )) . ◮ Trace-class noise.

  23. Back to Neural Fields... Kramers’ Formula and LDP Observations (K./Riedler, 2013) ◮ From [Laing/Troy03,Enulescu/Bestehorn07] ε = 0 ⇒ neural field has energy-structure. Let g := f − 1 , P ( x , t ) = f ( U ( x , t )) . 1 ∂ t P ( x , t ) = − g ′ ( P ( x , t )) ∇ E [ P ( x , t )] . But, there are problems for ε > 0 ⇒ ◮ Change-of-variable ⇒ multiplicative noise. ◮ Space-time dependent factor 1 / g ′ ( P ( x , t )) . ◮ Trace-class noise. ◮ LDP follows from evolution equation [daPratoZabczyk92]. ◮ LDP can be approximated using Galerkin method.

  24. Part 2 SDE Continuation: Motivation Consider the general differential equation ∂ u ∂ t = F ( u ; λ ) where λ ∈ R p are parameters.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend