nernst effect in unconventional density waves
play

Nernst effect in unconventional density waves Bal azs D ora, - PowerPoint PPT Presentation

Nernst effect in unconventional density waves Bal azs D ora, Kazumi Maki, Attila Virosztek Bojana Korin-Hamzi c, Mark Kartsovnik, Carmen Almasan Outline: What are UDW? General properties of -(BEDT-TTF) 2 KHg(SCN) 4 Phase


  1. Nernst effect in unconventional density waves Bal´ azs D´ ora, Kazumi Maki, Attila Virosztek Bojana Korin-Hamzi´ c, Mark Kartsovnik, Carmen Almasan Outline: • What are UDW? • General properties of α -(BEDT-TTF) 2 KHg(SCN) 4 • Phase diagram of CeCoIn 5 • Landau level formation • Angular dependent magnetoresistance • Thermoelectric power, Nernst coefficient

  2. UDW Hamiltonian: ′ � � � ξ ( k )( a + k ,σ a k ,σ − a + k − Q ,σ a k − Q ,σ ) + ∆( k , σ ) a + k ,σ a k − Q ,σ + ∆( k , σ ) a + H = k − Q ,σ a k ,σ . k ,σ � a + k ,σ a k − Q ,σ � ∼ ∆( k , σ ): non-local interaction (on site and direct Coulomb, exchange, pair-hopping and bond-charge). The spectrum: �� ξ ( k ) − ξ ( k − Q ) � 2 E ± ( k , σ ) = ξ ( k ) + ξ ( k − Q ) + | ∆( k , σ ) | 2 ± 2 2 The general form of the gap in quasi-1D: ∆( l ) = ∆ 0 + ∆ 1 cos( l y b ) + ∆ 2 sin( l y b ) + ∆ 3 cos( l z c ) + ∆ 4 sin( l z c ) wavevector dependent=unconventional, � m ( Q ) � = 0, � n ( Q ) � = 0, “hidden-order”. ∆( σ ) = ∆( − σ ): UCDW, ∆( σ ) = − ∆( − σ ): USDW 1

  3. 3 2.5 2 E + ∆ 1.5 1 0.5 0 3 2 1 1 0.5 0 0 −1 −2 −0.5 bk y a ( k x − k F ) −3 −1 ∆( k ) = ∆ sin( bk y ), ε ( k ) = − 2 t a cos( ak x ) − 2 t b cos( bk y ), t a / ∆ = 2, t b / ∆ = 0 . 1 2

  4. Order parameters: phase gap order parameter UCDW ∆ cos( bk y ) electric current density UCDW ∆ sin( bk y ) kinetic energy density USDW ∆ cos( bk y ) spin current density USDW ∆ sin( bk y ) spin kinetic energy density These phases are known as: orbital antiferromagnet, staggered flux phase, d-density wave, bond-order wave, spin nematic state and spin bond-order wave. 3

  5. The thermodynamic properties are identical to that of d-wave SC. Consequences: 3 ··· ∆ 0 C ∼ T 2 2.5 - - ∆ i � =0 χ ∼ T g ( ω ) /g 0 2 σ ( ω → 0) ∼ constant, ω 2 1.5 σ ( ω → 2∆) ∼ constant or diverges 1 Possible materials with UDW ground state: 0.5 • URu 2 Si 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ω/ ∆ • α − (BEDT-TTF) 2 KHg(SCN) 4 • α − (BEDT-TTF) 2 I 3 • 2H-TaSe 2 • pseudogap: (TaSe 4 ) 2 I, HTSC, transition metal oxides (SrRuO 3 , BaRuO 3 ) 4

  6. α − (BEDT-TTF) 2 MHg(SCN) 4 salt (M=K, Rb, Tl, NH 4 ) • quasi-one dimensional Fermi surface ⇒ DW instability • M=NH 4 : superconductor at T = 1 K • M=K, Rb, Tl: phase transition at T = 8 − 12 K • no X-ray (CDW) or spin signal (SDW) ⇒ hidden-order • threshold electric field consistent with UDW c a Fermi surface B-T phase diagram ⇒ a kind of CDW 5

  7. Properties of CeCoIn 5 Similarities with high T c superconductors: • quasi-2-dimensional structure (tetragonal) • d-wave SC UDW • proximity of AF T • presence of non-Fermi liquid phase Fermi liquid d-wave SC QCP B 6

  8. Angular dependent magnetoresistance in CeCoIn 5 0.094 σ [H=4 T (red), 5 T (blue), 8 T (green), 10 T (black)] 0.093 0.092 0.091 0.09 0.089 0.088 0.087 0.086 0.085 0 20 40 60 80 100 120 140 160 180 θ 7

  9. Effect of magnetic field 1. Landau levels, continuum model: n ∂ x L n ] + iv ⊥ ( − 1) n [ R + n =1 , 2 ( − iv [ R + n ∂ x R n − L + n ∂ y R n − L + n ∂ y L n ] − i ∆ b [exp( iϕ ) R + n ∂ y L n + exp( − iϕ ) L + � d r � H = n ∂ y R n ]) E Ψ = ( − iv a ∂ x ρ 3 + ∆ ceBx cos( θ ) ρ 1 )Ψ , � ⇒ E n = µ ± 2 nv a ∆ ce | B cos( θ ) | � In quasi 2D: E n = µ ± 2 n ∆ ceB | v a cos( θ ) − v ⊥ sin( θ ) | 3 2.5 2. Conductivity: E N E + 2 ∆ 1.5 1 σ n � 0.5 σ = cosh 2 ( βE n / 2), 0 3 2 n 1 1 0.5 0 −1 0 bk y a ( k x − k F ) −2 −0.5 y −3 −1 x 8

  10. Angular dependent magnetoresistance in α -(BEDT-TTF) 2 KHg(SCN) 4 3500 3500 3000 3000 2500 2500 R ⊥ (15 T, θ ) (Ohm) R ⊥ (15 T, θ ) (Ohm) 2000 2000 1500 1500 1000 1000 500 500 0 0 −100 −80 −60 −40 −20 0 20 40 60 80 100 −100 −80 −60 −40 −20 0 20 40 60 80 100 θ ( ◦ ) θ ( ◦ ) experiment theory Current perpendicular to the a-c plane at T = 1 . 4K and B = 15 T for φ = − 77 ◦ , − 70 ◦ , − 62 . 5 ◦ , − 55 ◦ , − 47 ◦ , − 39 ◦ , − 30 . 5 ◦ , − 22 ◦ , − 14 ◦ , − 6 ◦ , 2 ◦ , 10 ◦ 23 ◦ , 33 ◦ , 41 ◦ , 48 . 5 ◦ , 56 ◦ , 61 ◦ , 64 ◦ , 67 ◦ , 73 ◦ , 80 ◦ , 88 . 5 ◦ , 92 ◦ and 96 ◦ from bottom to top. The curves are shifted from their original position along the vertical axis by n × 100Ohm, n = 0 for φ = − 77 ◦ , n = 1 for φ = − 70 ◦ , . . . . 9

  11. Angular dependent magnetoresistance in CeCoIn 5 0.094 σ (H=4 T (circle), 5 T (triangle), 8 T (square), 10 T (star) 0.093 0.092 0.091 0.09 0.089 0.088 0.087 0.086 0.085 0 20 40 60 80 100 120 140 160 180 θ 10

  12. Thermoelectric coefficients Seebeck coefficient : thermally excited quasiparticles, carrying energy, formulated similarly to resistivity. First three Landau levels are used. Nernst coefficient : in an applied electric and magnetic field, the quasiparticle orbits drift as: v D = ( E × B ) /B 2 . Heat current: J h = TS v D . S = g (0) e | B cos( θ ) | � ln(1 + exp( − βE n )) + βE n (1 + exp( βE n )) − 1 � � , m ∗ n for small T and large B : S = 2 g (0) e | B cos( θ ) | � � � �� � �� βE 1 βE 1 ln(2) + 2 ln 2 cosh − βE 1 tanh . m ∗ 2 2 α xy = − S | cos( θ ) | Bσ α xy = 1 � L 2D ��� � � � �� � βE 1 βE 1 1 + γ 2 B 2 − 2 e ln(2) + 2 ln 2 cosh − βE 1 tanh , 2 2 σ γ = eτ/m 11

  13. Seebeck and Nernst coefficient in α -(BEDT-TTF) 2 KHg(SCN) 4 0 2.5 T = 1 . 4 K −1 2 T = 4 . 8 K T = 4 . 8 K −2 1.5 S xy ( µ V/K) S ( µ V/K) −3 1 T = 5 . 8 K −4 0.5 T = 6 . 9 K T = 1 . 4 K −5 0 −0.5 −6 5 10 15 20 6 8 10 12 14 16 18 20 22 B (T) B (T) 12

  14. Seebeck and Nernst coefficient in CeCoIn 5 25 55 50 20 45 S xx ( µ V/K) 15 S xx ( µ V/K) 40 10 35 30 5 25 0 20 -5 15 0 2 4 6 8 10 12 0 2 4 6 8 10 12 B (T) B (T) T = 1 . 3 K, 1 . 65 K, 2 . 5 K, 3 . 5 K, 4 . 8 K 7 . 3 K, 10 . 5 K 15 K (from bottom to top) 0.5 0 0 -0.5 α xy ( µ V/K) α xy ( µ V/K) -0.5 -1 -1 -1.5 -1.5 -2 -2 -2.5 0 2 4 6 8 10 12 0 2 4 6 8 10 12 B (T) B (T) 13

  15. Conclusions • non-local interactions • transition is metal to metal instead of metal to insulator • gapless excitations around the zeros of the gap • In magnetic field: Landau levels, particles living around nodes dominate the low-T high-H be- haviour, gapped excitations • The low-temperature phase of α -(BEDT-TTF) 2 KHg(SCN) 4 is well described by Q1D UCDW • Q2D UDW is consistent with the pseudogap (non-Fermi liquid) phase of CeCoIn 5 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend