near best rational approximation and spectral methods
play

Near best rational approximation and spectral methods Joris Van - PowerPoint PPT Presentation

Near best rational approximation and spectral methods Joris Van Deun University of Antwerp Dept. Math. & Computer Science 20 May 2008 1 / 44 Part I Near best interpolation 2 / 44 Introduction A very old and very classical problem. .


  1. Near best rational approximation and spectral methods Joris Van Deun University of Antwerp Dept. Math. & Computer Science 20 May 2008 1 / 44

  2. Part I Near best interpolation 2 / 44

  3. Introduction A very old and very classical problem. . . Given a real, continuous function f ( x ) on [ − 1 , 1 ] , find a good polynomial approximation Possible solutions ◮ Best (minimax) polynomial approximation according to the norm � f � := � f � ∞ = − 1 ≤ x ≤ 1 | f ( x ) | max ◮ Polynomial least squares approximation ◮ Interpolating polynomial 3 / 44

  4. Linear minimax approximation Problem Given linearly independent functions { ϕ k } find � � n � � � min � f ( x ) − a k ϕ k ( x ) � � � � a k k = 0 � Solution a k such that f − � a k ϕ k equi-oscillates, i.e. n + 2 extremal points of equal magnitude and alternating sign Example: minimax polynomial approximation Take ϕ k ( x ) = x k for k = 0 , 1 , . . . , n 4 / 44

  5. Interpolating polynomial Take n + 1 points x 0 , x 1 , . . . , x n and construct polynomial p n ( x ) such that f ( x i ) = p n ( x i ) , i = 1 , 2 , . . . n Choice of interpolation points? It is well-known that f ( x ) − p n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 )! ( x − x 0 ) · · · ( x − x n ) where ξ depends on x and x 0 , x 1 , . . . , x n and f Try to choose x 0 , . . . , x n such that f − p n equi-oscillates . . . 5 / 44

  6. Equi-oscillating polynomial on [ − 1 , 1 ] Find points x 0 , . . . , x n such that ( x − x 0 ) · · · ( x − x n ) equi-oscillates on [ − 1 , 1 ] ◮ Chebyshev polynomial 1 0.8 T n + 1 ( x ) = cos (( n + 1 ) arccos x ) 0.6 0.4 ◮ Zeros are given by 0.2 0 x k = cos π ( 2 k + 1 ) −0.2 2 ( n + 1 ) −0.4 −0.6 for k = 0 , . . . , n −0.8 −1 ◮ Interpolation in x k is near −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 best 6 / 44

  7. Alternative interpretation From f ( x ) − p n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 )! ( x − x 0 ) · · · ( x − x n ) it follows that � f − p n � ≤ max − 1 ≤ t ≤ 1 f ( n + 1 ) ( t ) � ( x − x 0 ) · · · ( x − x n ) � ( n + 1 )! Minimising � ( x − x 0 ) · · · ( x − x n ) � over x 0 , . . . , x n leads to the Chebyshev zeros The unique monic polynomial of degree n + 1 which deviates least from zero in the infinity norm, is a scaled Chebyshev polynomial 7 / 44

  8. How good is near best? Let f be a continuous function on [ − 1 , 1 ] , p n its polynomial interpolant in the Chebyshev zeros, and p ∗ n its best approximation on [ − 1 , 1 ] according to the infinity norm. Then � � 2 + 2 � f − p ∗ � f − p n � ≤ π log n n � ◮ If n < 10 5 we loose at most 1 digit ◮ If n < 10 66 we loose at most 2 digits If f is analytic in an ellipse with foci ± 1 and semimajor/minor axis lengths a ≥ 1 and b ≥ 0 , then � f − p n � = O (( a + b ) − n ) , n → ∞ 8 / 44

  9. Rational generalisation What if f has singularities close to [ − 1 , 1 ] ? Example Take 1 f ( x ) = ε 2 + x 2 , 0 < ε ≪ 1 with poles at ± i ε Then � f − p n � = O (( 1 + ε ) − n ) Polynomial interpolation converges too slowly! 9 / 44

  10. Near best fixed pole rational interpolation Let poles α 1 , . . . , α m be given (real or complex conjugate) and put π m ( x ) = ( x − α 1 ) · · · ( x − α m ) Then π m ( x ) = [ π m ( ξ ) f ( ξ )] ( n + 1 ) f ( x ) − p n ( x ) ( x − x 0 ) · · · ( x − x n ) ( n + 1 )! π m ( x ) when f ( x i ) = p n ( x i ) π m ( x i ) , i = 0 , 1 , . . . , n 10 / 44

  11. Linear minimax approximation Problem Given linearly independent functions { ϕ k } find � � n � � � min � f ( x ) − a k ϕ k ( x ) � � � � a k k = 0 � Solution a k such that f − � a k ϕ k equi-oscillates, i.e. n + 2 extremal points of equal magnitude and alternating sign Example: minimax rational approximation Take ϕ k ( x ) = x k /π m ( x ) for k = 0 , 1 , . . . , n 11 / 44

  12. Near best fixed pole rational interpolation Problem statement Given π m , find x 0 , . . . , x n with n + 1 ≥ m such that � q n + 1 /π m � is minimal, where q n + 1 ( x ) = ( x − x 0 ) · · · ( x − x n ) (equivalently: such that q n + 1 /π m equi-oscillates) History ◮ Special case studied by Markoff, 1884 ◮ General case solved by Bernstein, 1937 ◮ Discussed in Appendix A of Achieser’s “Theory of Approximation”, 1956 ◮ Only theoretical solution, no properties, computational aspects, . . . 12 / 44

  13. Joukowski transformation J − 1 J � � x = J ( z ) = 1 z + 1 2 z � x 2 − 1 z = x − 13 / 44

  14. Near best fixed pole rational interpolation Solution ◮ Let { α 1 , . . . , α m } denote zeros of π m ◮ Put β k = J − 1 ( α k ) for k = 1 , . . . , m ◮ Define B m by B m ( z ) = z − β 1 1 − β 1 z · · · z − β m 1 − β m z Then � � T n ( x ) = 1 1 z n − m B m ( z ) + z n − m B m ( z ) 2 is a rational function in x of the form q n ( x ) /π m ( x ) . The interpolation points x 0 , . . . , x n are the zeros of T n + 1 ( x ) . 14 / 44

  15. Equi-oscillating rational function on [ − 1 , 1 ] Example π m ( x ) = � m / 2 k = 1 ( x 2 + k 2 ω 2 ) where ω = 0 . 1 1 0.4 0.8 0.3 0.6 0.2 0.4 0.2 0.1 0 0 −0.2 −0.1 −0.4 −0.2 −0.6 −0.8 −0.3 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −0.4 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 T n ( x ) Poles & zeros Note Poles attract zeros (see later: electrostatic interpretation) 15 / 44

  16. Why bother? Can we not just do rational interpolation in the (polynomial) Chebyshev points (zeros of Chebyshev polynomial T n )? ◮ If α 1 , . . . , α m correspond to poles of f close to the interval, then � π m f − p n � will be small (enlarging the ellipse of analyticity) ◮ However, dividing by π m can destroy this advantage and � f − p n /π m � may not be small ◮ If poles gather near the interior of the interval, Chebyshev zeros are useless ◮ Application: differential equations with interior layers 16 / 44

  17. Example Let π x /ω f ( x ) = sinh ( π x /ω ) This function has simple poles at ± i k ω for k = 1 , 2 , . . . ◮ Interpolate by p n − 1 in zeros of T n ◮ Interpolate by p n − 1 /π n − 2 ◮ in zeros of T n ◮ in zeros of T n Plot interpolation error � f − p n − 1 � and � f − p n − 1 /π n − 2 � for the case ω = 0 . 01 17 / 44

  18. Graph of f ( x ) 1 0 . 75 0 . 5 0 . 25 0 − 1 − 0 . 5 0 0 . 5 1 18 / 44

  19. Interpolation error as function of n 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 0 10 20 30 40 50 60 70 80 90 100 19 / 44

  20. Interpolation error as function of n 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 0 10 20 30 40 50 60 70 80 90 100 19 / 44

  21. Interpolation error as function of n 0 10 −2 10 −4 10 −6 10 −8 10 −10 10 −12 10 −14 10 0 10 20 30 40 50 60 70 80 90 100 19 / 44

  22. Part II Properties 20 / 44

  23. Properties of T n and T n Definition � � T n ( x ) = 1 z n + 1 z n 2 � � T n ( x ) = 1 1 z n − m B m ( z ) + z n − m B m ( z ) 2 Orthogonality property � 1 dx T j ( x ) T k ( x ) √ 1 − x 2 = 0 , j � = k − 1 � 1 dx √ T j ( x ) T k ( x ) 1 − x 2 = 0 , j � = k , j , k ≥ m − 1 21 / 44

  24. Properties of T n and T n Three term recurrence It is well known that T n + 1 ( x ) = 2 xT n ( x ) − T n − 1 ( x ) for n = 1 , 2 , . . . Writing T n ( x ) = q n ( x ) π n ( x ) where π n ( x ) = ( x − α 1 ) · · · ( x − α n ) , n ≤ m = π m ( x ) , n > m we can extend the definition for T n to n < m using the theory of orthogonal rational functions 22 / 44

  25. They satisfy the recurrence relation � 1 − x /α n − 1 � x T n ( x ) = A n + B n T n − 1 ( x ) 1 − x /α n 1 − x /α n 1 − x / ¯ α n − 2 + C n T n − 2 ( x ) 1 − x /α n for n = 1 , 2 , . . . with T 0 = 1 and T − 1 = 0 The recurrence coefficients A n , B n and C n are known explicitly 23 / 44

  26. Explicit formulas for the recurrence coefficients A n = 2 ( 1 − β n β n − 1 )( 1 − | β n − 1 | 2 ) ( 1 + β 2 n − 1 )( 1 + β 2 n ) B n = − ( 1 − | β n − 1 | 2 )( β n + ¯ β n − 2 ) + ( β n − 1 + ¯ β n − 1 )( 1 − β n ¯ β n − 2 ) n )( 1 − β n − 1 ¯ ( 1 + β 2 β n − 2 ) C n = − ( 1 − β n ¯ β n − 1 )( 1 + ¯ β 2 n − 2 ) ( 1 − β n − 1 ¯ β n − 2 )( 1 + β 2 n ) 24 / 44

  27. Interpolation points as eigenvalues From the three term recurrence it follows immediately that the zeros of T n ( x ) are the eigenvalues of   0 1 1 1 0   2 2   ... ...       ... 1    2  1 0 2 Explicitly: x k = cos π ( 2 k + 1 ) , k = 0 , 1 , . . . , n − 1 2 n 25 / 44

  28. Interpolation points as eigenvalues The zeros of T n ( x ) are also the generalised eigenvalues of the matrix pencil ( J n , J n D n − S n + I n ) , where   − B 1 1  0  A 1 A 1 1 − C 2 − B 2 1   α 1   A 2 A 2 A 2   J n = , D n =   ... ... ... ...           1 − C n − B n α n − 1 A n A n   0    ℑ ( α 1 ) C 3    S n = 2i | α 1 | 2 A 3   ...       ℑ ( α n − 2 ) C n | α n − 2 | 2 A n 26 / 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend