muone how can lattice contribute
play

MUonE: how can lattice contribute? Marina Krsti Marinkovi Trinity - PowerPoint PPT Presentation

MUonE: how can lattice contribute? Marina Krsti Marinkovi Trinity College Dublin in collab. w. N. Cardoso (IST, Lisbon) and Second Plenary Workshop of the Muon g-2 Theory Initiative


  1. MUonE: how can lattice contribute? Marina Krsti ć Marinkovi ć Trinity College Dublin in collab. w. N. Cardoso (IST, Lisbon) and Second Plenary Workshop of the Muon g-2 Theory Initiative JGU Mainz, 18-22 June 2018

  2. MUonE: theoretical framework α ( t ) • Utilise the running of the fine-structure constant : Z 1 = α a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] µ [Lautrup, de Rafael ‘69] π 0 ➡ In space-like (Euclidean) momenta region: Q 2 = x 2 m 2 µ 1 − x ➡ Measuring the Q 2 - dependent fine-structure constant: α ( O ) [ Phys.Lett. B746 (2015) 325-329 by Carloni, Passera,Trentadue, Venanzoni ] @ KLOE2 α ( Q 2 ) = 1 − ∆ α ( Q 2 ) [ Eur.Phys.J. C77 (2017) no.3, 139 by Abbiendi et al. ] Physics beyond colliders@CERN

  3. MUonE: theoretical framework α ( t ) • Utilise the running of the fine-structure constant : Z 1 = α a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] µ [Lautrup, de Rafael ‘69] π 0 ➡ In space-like (Euclidean) momenta region: Q 2 = x 2 m 2 µ 1 − x ➡ Measuring the Q 2 - dependent fine-structure constant: α ( O ) [ Phys.Lett. B746 (2015) 325-329 by Carloni, Passera,Trentadue, Venanzoni ] @ KLOE2 α ( Q 2 ) = 1 − ∆ α ( Q 2 ) [ Eur.Phys.J. C77 (2017) no.3, 139 by Abbiendi et al. ] Physics beyond colliders@CERN ➡ The running contributions can be split of the hadronic and leptonic part: ∆ α ( Q 2 ) = ∆ α had ( Q 2 ) + ∆ α lep ( Q 2 )

  4. MUonE: theoretical framework α ( Q 2 ) ➡ MUonE will measure total : ∆ α ( Q 2 ) = ∆ α had ( Q 2 ) + ∆ α lep ( Q 2 ) Q 2 ∈ [0 . 001 , 0 . 14]GeV 2 ➡ Subtracting the purely leptonic part: Z 1 = α a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] ∆ α ( Q 2 ) − ∆ α lep ( Q 2 ) ≡ ∆ α had ( Q 2 ) µ π 0 [Lautrup, de Rafael ‘69]

  5. MUonE: theoretical framework α ( Q 2 ) ➡ MUonE will measure total : ∆ α ( Q 2 ) = ∆ α had ( Q 2 ) + ∆ α lep ( Q 2 ) Q 2 ∈ [0 . 001 , 0 . 14]GeV 2 ➡ Subtracting the purely leptonic part: Z 1 = α a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] ∆ α ( Q 2 ) − ∆ α lep ( Q 2 ) ≡ ∆ α had ( Q 2 ) µ π 0 [Lautrup, de Rafael ‘69] experimental effort theoretical effort [NNLO amp.: Mastrolia et al. JHEP 11 (2017) 198 ] [NNLO had.: Brogio, Signer, Ulrich ] [NNLO+ Resumation Fael, Passera ] [MC@NNLO Pavia gr.,Czyz ] […]

  6. MUonE: theoretical framework α ( Q 2 ) ➡ MUonE will measure total : ∆ α ( Q 2 ) = ∆ α had ( Q 2 ) + ∆ α lep ( Q 2 ) Q 2 ∈ [0 . 001 , 0 . 14]GeV 2 ➡ Subtracting the purely leptonic part: Z 1 = α a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] ∆ α ( Q 2 ) − ∆ α lep ( Q 2 ) ≡ ∆ α had ( Q 2 ) µ π 0 [Lautrup, de Rafael ‘69] experimental known up to three loops [Steinhauser ‘98] effort for some Q 2 four loops [Baikov et al. ’13, Sturm ‘13] theoretical effort [NNLO amp.: Mastrolia et al. JHEP 11 (2017) 198 ] [NNLO had.: Brogio, Signer, Ulrich ] [NNLO+ Resumation Fael, Passera ] [MC@NNLO Pavia gr.,Czyz ] […]

  7. MUonE: from the experimental region a HV P µ • MUonE: estimated precision for the HVP from the μ e exp. is 0.3% in [0,0.14]GeV 2 after two years of data taking [see slides by C. Carloni Calame, Thurs. 15.35] • Due to the experimental constraints: region [0.14, ∞ ] GeV 2 cannot be covered by the MUonE exp. | t | ( 10 − 3 GeV 2 ) Q 2 ≡ 0 0 . 55 2 . 98 10 . 5 35 . 7 ∞ 7 6 × 10 5 5 ⌘ µ ⇣ x 2 m 2 x − 1 4 (1 − x ) · ∆ α had 3 x max = 0 . 93 2 ➡ Q 2 = x 2 m 2 µ ➡ 1 1 − x Q 2 exp , max = 0 . 14GeV 2 ➡ 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 x max ∼ Q 2 x exp , max

  8. MUonE: beyond the experimental region a HV P µ • MUonE: estimated precision for the HVP from the μ e exp. is 0.3% in [0,0.14]GeV 2 after two years of data taking [see slides by C. Carloni Calame, Thurs. 15.35] • Due to the experimental constraints: region [0.14, ∞ ] GeV 2 cannot be covered by the MUonE exp. | t | ( 10 − 3 GeV 2 ) Q 2 ≡ 0 0 . 55 2 . 98 10 . 5 35 . 7 ∞ 1. using time-like data from R-ratios / lattice QCD 7 Q 2 in [0.14GeV 2 , Q 2high ] 6 × 10 5 pQCD Q 2 in [Q 2high , ∞ ] 2. 5 ⌘ µ ⇣ x 2 m 2 x − 1 4 (1 − x ) · ∆ α had 3 x max = 0 . 93 2 ➡ Q 2 = x 2 m 2 µ ➡ 1 1 − x Q 2 exp , max = 0 . 14GeV 2 ➡ 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 x max ∼ Q 2 x exp , max

  9. MUonE: beyond the experimental region a HV P µ • MUonE: estimated precision for the HVP from the μ e exp. is 0.3% in [0,0.14]GeV 2 after two years of data taking [see slides by C. Carloni Calame, Thurs. 15.35] • Due to the experimental constraints: region [0.14, ∞ ] GeV 2 cannot be covered by the MUonE exp. Z 0 . 93 ... ⌘ 2 Z Q 2 ⌘ 2 Z ∞ ⇣ α = α max ⇣ α dQ 2 f ( Q 2 ) × ˆ dQ 2 f ( Q 2 ) × ˆ a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] + Π ( Q 2 )+ Π pert. ( Q 2 ) µ π π π Q 2 0 0 . 14 max | {z } I 0

  10. MUonE: beyond the experimental region a HV P µ • MUonE: estimated precision for the HVP from the μ e exp. is 0.3% in [0,0.14]GeV 2 after two years of data taking [see slides by C. Carloni Calame, Thurs. 15.35] • Due to the experimental constraints: region [0.14, ∞ ] GeV 2 cannot be covered by the MUonE exp. Z 0 . 93 ... ⌘ 2 Z Q 2 ⌘ 2 Z ∞ ⇣ α = α max ⇣ α dQ 2 f ( Q 2 ) × ˆ dQ 2 f ( Q 2 ) × ˆ a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] + Π ( Q 2 )+ Π pert. ( Q 2 ) µ π π π Q 2 0 0 . 14 max | {z } I 1 • lattice QCD • R-ratios

  11. MUonE: beyond the experimental region a HV P µ • MUonE: estimated precision for the HVP from the μ e exp. is 0.3% in [0,0.14]GeV 2 after two years of data taking [see slides by C. Carloni Calame, Thurs. 15.35] • Due to the experimental constraints: region [0.14, ∞ ] GeV 2 cannot be covered by the MUonE exp. Z 0 . 93 ... ⌘ 2 Z Q 2 ⌘ 2 Z ∞ ⇣ α ⇣ α = α max dQ 2 f ( Q 2 ) × ˆ dQ 2 f ( Q 2 ) × ˆ a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] + Π ( Q 2 )+ Π pert. ( Q 2 ) µ π π π Q 2 0 0 . 14 max | {z } I 2 [Chetyrkin et al. ‘96] [Harlander&Steinhauser ‘02] + matching term (I 3 )… [see e.g. BMW arXiv:1711.04980 ] [K. Miura, Thurs. 9.00]

  12. MUonE: beyond the experimental region a HV P µ • MUonE: estimated precision for the HVP from the μ e exp. is 0.3% in [0,0.14]GeV 2 after two years of data taking [see slides by C. Carloni Calame, Thurs. 15.35] • Due to the experimental constraints: region [0.14, ∞ ] GeV 2 cannot be covered by the MUonE exp. Z 0 . 93 ... ⌘ 2 Z Q 2 ⌘ 2 Z ∞ ⇣ α = α max ⇣ α dQ 2 f ( Q 2 ) × ˆ dQ 2 f ( Q 2 ) × ˆ a had,LO dx (1 − x ) ∆ α had [ Q 2 ( x )] + Π ( Q 2 )+ Π pert. ( Q 2 ) µ π π π Q 2 0 0 . 14 max | {z } I 1 • lattice QCD • R-ratios

  13. Phys. Rev. D 90, 074508 (2014), Hybrid method [Golterman,Maltman,Peris] • Low momentum region ➡ Experiment (NLO, NNLO, radiative corrections … )

  14. Phys. Rev. D 90, 074508 (2014), Hybrid method [Golterman,Maltman,Peris] • Low momentum region ➡ Experiment (NLO, • Vary low and high Q 2 cut NNLO, radiative corrections … )

  15. Phys. Rev. D 90, 074508 (2014), Hybrid method [Golterman,Maltman,Peris] • Low momentum region ➡ Experiment (NLO, • Vary low and high Q 2 cut NNLO, radiative corrections … ) ➡ continuum limit: a—> 0 ➡ infinite volume limit: V—> ∞ ➡ physical quark masses ➡ isospin breaking corrections (m u ≠ m d and α em ≠ 0)

  16. Phys. Rev. D 90, 074508 (2014), Hybrid method [Golterman,Maltman,Peris] • Low momentum region ➡ Experiment (NLO, • Vary low and high Q 2 cut NNLO, radiative corrections … ) ➡ continuum limit: a—> 0 (0.049-0.076fm) infinite volume limit: V—> ∞ ➡ ➡ physical quark masses (extrap. m π ≈ 270-440MeV) ➡ isospin breaking corrections (m u ≠ m d and α em ≠ 0)

  17. Hybrid method: from experimental + lattice QCD data 120 [0.14,4.0]GeV 2 x 10 10 cont. limit cont. limit 2 + α 3 m π 2 ln (m π 2 ) α 1 + α 2 m π 2 + α 3 m π 2 ln (m π 2 ) α 1 + α 2 m π 100 P r e l 80 i m i n a r y 60 had,LO 40 I1 = a µ 20 0 2 0 0.05 0.1 0.15 0.2 m π ,phys 2 [GeV 2 ] m π

  18. Hybrid method: from experimental + lattice QCD data 120 [0.14,4.0]GeV 2 x 10 10 cont. limit cont. limit 2 + α 3 m π 2 ln (m π 2 ) α 1 + α 2 m π 2 + α 3 m π 2 ln (m π 2 ) α 1 + α 2 m π 100 P r e l 80 i m i n a r y 60 had,LO 40 I1 = a µ 20 0 2 0 0.05 0.1 0.15 0.2 m π ,phys 2 [GeV 2 ] m π ➡ Nf=2, A5,E5,F6,N6,O7 (CLS), m π ≈ 270-440MeV ➡ u,d,s,c connected, no isospin breaking corr. Π (0) = − ∂ Π 12 ( Q ) | Q 2 =0 ➡ [de Divitiis et al., Phys.Lett. B718 (2012)] ∂ Q 1 ∂ Q 2 Pade fits [0.14, 4.0] GeV 2 (to be compared with numerical integration/conformal pol. fits in the low-Q 2 ) ➡ ➡ Continuum + chiral extrapolation [arXiv:1705.01775]: α 1 + α 2 m 2 π + α 3 m 2 π ln ( m 2 π ) + α 4 a ➡ Preliminary result with 9.7% uncertainty on I1, more statistics and one more m π underway ➡ Possible improvements: diff. chiral extrap. + improved vector current [H. Meyer, Wed. 16.30]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend