multiscale methods for time harmonic acoustic and elastic
play

Multiscale methods for time-harmonic acoustic and elastic wave - PowerPoint PPT Presentation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut f ur Angewandte und Numerische Mathematik Karlsruher Institut f ur Technologie (KIT)


  1. Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut f¨ ur Angewandte und Numerische Mathematik Karlsruher Institut f¨ ur Technologie (KIT) Workshop on Analysis and Numerics of Acoustic and Electromagnetic Problems RICAM, 17 –22. October 2016 D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 1

  2. Outline Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 2

  3. Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

  4. Model problem: high-frequency acoustic scattering ◮ Ω ⊂ R d bounded polytope, diam Ω ≈ 1 ◮ ∂ Ω = Γ D ∪ Γ R ◮ wave number κ > 0 real parameter ◮ incident wave u in ◮ we seek u = u in + u scat ◮ positive and bounded material parameters A ( x ) , n ( x ) , β ( x ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 3

  5. Model problem: high-frequency acoustic scattering ◮ Ω ⊂ R d bounded polytope, diam Ω ≈ 1 ◮ ∂ Ω = Γ D ∪ Γ R ◮ wave number κ > 0 real parameter ◮ incident wave u in ◮ we seek u = u in + u scat ◮ positive and bounded material parameters A ( x ) , n ( x ) , β ( x ) − div ( A ∇ u ) − κ 2 nu = in Ω f u = 0 on Γ D ⊆ ∂ Ω ( A ∇ u ) · ν − i βκ u = on Γ R : = ∂ Ω \ Γ D g D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 3

  6. Pollution effect 1 d Helmholtz: − u xx − κ 2 u = 0 in [ − 1 , 1 ] , u in ( x ) = exp ( − i κ x ) Results for P 1 -FEM (fixed resolution H : = const / κ ) 10 2 P1FEM P1-best ratio 10 1 V-error 10 0 10 -1 10 0 10 1 10 2 10 3 κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 4

  7. Pollution effect 1 d Helmholtz: − u xx − κ 2 u = 0 in [ − 1 , 1 ] , u in ( x ) = exp ( − i κ x ) Results for P 1 -FEM (fixed resolution H : = const / κ ) 10 2 P1FEM P1-best ratio 10 1 V-error 10 0 10 -1 10 0 10 1 10 2 10 3 κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 4

  8. Pollution effect 1 d Helmholtz: − u xx − κ 2 u = 0 in [ − 1 , 1 ] , u in ( x ) = exp ( − i κ x ) Results for P 1 -FEM (fixed resolution H : = const / κ ) 10 2 P1FEM P1-best ratio 10 1 V-error 10 0 10 -1 10 0 10 1 10 2 10 3 κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 4

  9. Pollution effect 1 d Helmholtz: − u xx − κ 2 u = 0 in [ − 1 , 1 ] , u in ( x ) = exp ( − i κ x ) Results for P 1 -FEM (fixed resolution H : = const / κ ) 10 2 P1FEM P1-best ratio 10 1 error(FEM) error(bestapprox) � κ s V-error 10 0 [Babuˇ ska-Sauter 2000] 10 -1 10 0 10 1 10 2 10 3 κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 4

  10. Pollution effect 1 d Helmholtz: − u xx − κ 2 u = 0 in [ − 1 , 1 ] , u in ( x ) = exp ( − i κ x ) Results for P 1 -FEM (fixed resolution H : = const / κ ) 10 2 P1FEM P1-best ratio msPG Goal: 10 1 V-error error(msPG) error(bestapprox) ≤ C 10 0 10 -1 10 0 10 1 10 2 10 3 κ D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. , 2015. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 4

  11. Other Approaches ◮ hp -FEM with p ≈ log κ Melenk, Sauter ◮ Trefftz methods, Plane wave methods Hiptmair, Moiola, Perugia ◮ DG FEM Farhat, Tezaur; Feng, Wu ◮ Ultra-weak formulation Cessenat, Despr´ es; Buffa, Monk ◮ Discontinuous Petrov-Galerkin Demkowicz, Gopalakrishnan D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 5

  12. Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

  13. Variational formulation ◮ Hilbert space V : = H 1 D ( Ω ; C ) : = { v ∈ H 1 ( Ω ; C ) : v | Γ D = 0 } ◮ Continuous sesquilinear form on V × V a ( v , w ) : = ( A ∇ v , ∇ w ) L 2 ( Ω ) − κ 2 ( nv , w ) L 2 ( Ω ) − i κ ( β v , w ) L 2 ( Γ R ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 6

  14. Variational formulation ◮ Hilbert space V : = H 1 D ( Ω ; C ) : = { v ∈ H 1 ( Ω ; C ) : v | Γ D = 0 } ◮ Continuous sesquilinear form on V × V a ( v , w ) : = ( A ∇ v , ∇ w ) L 2 ( Ω ) − κ 2 ( nv , w ) L 2 ( Ω ) − i κ ( β v , w ) L 2 ( Γ R ) Weak formulation seeks u ∈ V such that a ( u , v ) = ( f , v ) L 2 ( Ω ) +( g , v ) L 2 ( Γ R ) for all v ∈ V . D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 6

  15. Variational formulation ◮ Hilbert space V : = H 1 D ( Ω ; C ) : = { v ∈ H 1 ( Ω ; C ) : v | Γ D = 0 } ◮ Continuous sesquilinear form on V × V a ( v , w ) : = ( A ∇ v , ∇ w ) L 2 ( Ω ) − κ 2 ( nv , w ) L 2 ( Ω ) − i κ ( β v , w ) L 2 ( Γ R ) Weak formulation seeks u ∈ V such that a ( u , v ) = ( f , v ) L 2 ( Ω ) +( g , v ) L 2 ( Γ R ) for all v ∈ V . ◮ Data f ∈ L 2 ( Ω ; C ) and g ∈ L 2 ( Γ R ; C ) � ◮ Norm � v � V : = κ 2 � v � 2 L 2 ( Ω ) + � ∇ v � 2 L 2 ( Ω ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 6

  16. Well-posedness Assumption (Polynomial well-posedness) There exist a constant c ( Ω ) and a polynomial p such that c ( Ω ) ℜ a ( v , w ) p ( κ ) ≤ ( ⋆ ) inf sup � v � V � w � V v ∈ V \{ 0 } w ∈ V \{ 0 } D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 7

  17. Well-posedness Assumption (Polynomial well-posedness) There exist a constant c ( Ω ) and a polynomial p such that c ( Ω ) ℜ a ( v , w ) p ( κ ) ≤ ( ⋆ ) inf sup � v � V � w � V v ∈ V \{ 0 } w ∈ V \{ 0 } Homogeneous material: ◮ assumption not satisfied in general [Betcke et al 2011] ◮ pure impedence problem + Ω convex ⇒ γ ( κ , Ω ) � κ [Melenk 1995] ◮ pure impedence problem + Ω Lipschitz ⇒ γ ( κ , Ω ) � κ 7 / 2 [Esterhazy-Melenk 2012] ◮ star-shaped scatterer ⇒ γ ( κ , Ω ) � κ [Hetmaniuk 2007] D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 7

  18. Well-posedness Assumption (Polynomial well-posedness) There exist a constant c ( Ω ) and a polynomial p such that c ( Ω ) ℜ a ( v , w ) p ( κ ) ≤ ( ⋆ ) inf sup � v � V � w � V v ∈ V \{ 0 } w ∈ V \{ 0 } Heterogeneous material: Theorem There is a class of smooth coefficients A , n such that ( ⋆ ) holds. D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. Arxiv preprint , 2015. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 7

  19. Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

  20. Finite element spaces Coarse scale H � 1 / κ ◮ G H coarse mesh ◮ V H : = Q 1 ( G H ) ∩ V standard Q 1 FE space Fine scale h � 1 / κ 2 ◮ G h refinement of G H ◮ V h : = Q 1 ( G h ) ∩ V standard Q 1 FE space D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 8

  21. Finite element spaces Coarse scale H � 1 / κ ◮ G H coarse mesh ◮ V H : = Q 1 ( G H ) ∩ V standard Q 1 FE space Fine scale h � 1 / κ 2 ◮ G h refinement of G H ◮ V h : = Q 1 ( G h ) ∩ V standard Q 1 FE space Quasi-interpolation ◮ I H : V h → V H quasi-local projection ◮ Stability and L 2 -approximation H − 1 � v − I H v � L 2 ( T ) + � ∇ I H v � L 2 ( T ) ≤ C I H � ∇ v � L 2 ( N ( T )) ◮ Example: I H : = E H ◦ Π H Π H ... piecewise L 2 projection onto Q 1 ( G H ) E H ... nodal averaging operator D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 8

  22. Subscale correction Fine scale remainder (null space of I H ): W h : = { v h ∈ V h : I H ( v h ) = 0 } Subscale corrector C ∞ : V H → W h : Given v H ∈ V H , C ∞ v H solves a ( w , C ∞ v H ) = a ( w , v H ) for all w ∈ W h D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 9

  23. Subscale correction Fine scale remainder (null space of I H ): W h : = { v h ∈ V h : I H ( v h ) = 0 } Subscale corrector C ∞ : V H → W h : Given v H ∈ V H , C ∞ v H solves a ( w , C ∞ v H ) = a ( w , v H ) for all w ∈ W h 1 1 0.8 0.8 0.6 0.6 0.4 0.4 �→ C ∞ 0.2 0.2 0 0 0 0.5 1 0 0.2 0.4 0.6 0.8 1 D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 9

  24. Subscale correction Fine scale remainder (null space of I H ): W h : = { v h ∈ V h : I H ( v h ) = 0 } Subscale corrector C ∞ : V H → W h : Given v H ∈ V H , C ∞ v H solves a ( w , C ∞ v H ) = a ( w , v H ) for all w ∈ W h Lemma Under the resolution condition H κ � 1 , the corrector problems are well-posed (even coercive). D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 9

  25. Ideal Petrov-Galerkin method ◮ Standard trial space V H ◮ Corrected test space � V H : = ( 1 − C ∞ ) V H D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 10

  26. Ideal Petrov-Galerkin method ◮ Standard trial space V H ◮ Corrected test space � V H : = ( 1 − C ∞ ) V H 1 1 1 Re Re Re Im Im Im 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ˜ Λ z = ( 1 − C ∞ ) Λ z Λ z C ∞ Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 2016 p. 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend