math 211 math 211
play

Math 211 Math 211 Lecture #35 Forced Harmonic Motion November 19, - PowerPoint PPT Presentation

1 Math 211 Math 211 Lecture #35 Forced Harmonic Motion November 19, 2001 2 Forced Harmonic Motion Forced Harmonic Motion Assume an oscillatory forcing term: y + 2 cy + 2 0 y = A cos t A is the forcing amplitude is


  1. 1 Math 211 Math 211 Lecture #35 Forced Harmonic Motion November 19, 2001

  2. 2 Forced Harmonic Motion Forced Harmonic Motion Assume an oscillatory forcing term: y ′′ + 2 cy ′ + ω 2 0 y = A cos ωt • A is the forcing amplitude • ω is the forcing frequency • ω 0 is the natural frequency. • c is the damping constant. Return

  3. 3 Forced Undamped Motion Forced Undamped Motion y ′′ + ω 2 0 y = A cos ωt • Homogeneous equation: y ′′ + ω 2 0 y = 0 � General solution y ( t ) = C 1 cos ω 0 t + C 2 sin ω 0 t. • ω � = ω 0 : Particular solution A x p ( t ) = 0 − ω 2 cos ωt. ω 2 Return

  4. 4 • ω � = ω 0 � Initial conditions x (0) = x ′ (0) = 0 ⇒ A x ( t ) = 0 − ω 2 [cos ωt − cos ω 0 t ] . ω 2 � Set ω = ω 0 + ω δ = ω 0 − ω . and 2 2 x ( t ) = A sin δt sin ωt. 2 ωδ � Fast oscillation with frequency ω with amplitude oscillating slowly with frequency δ . ◮ Beats. Return

  5. 5 • ω = ω 0 y ′′ + ω 2 0 y = A cos ω 0 t. � An exceptional case. Particular solution A x p ( t ) = t sin ω 0 t. 2 ω 0 � Oscillation with increasing amplitude. � First example of resonance. ◮ Forcing at the natural frequency can cause oscillations that grow out of control. Return

  6. 6 Forced, Damped Harmonic Motion Forced, Damped Harmonic Motion x ′′ + 2 cx ′ + ω 2 0 x = A cos ωt • Homo. equation: x ′′ + 2 cx ′ + ω 2 0 x = 0 • Ch. polynomial: P ( λ ) = λ 2 + 2 cλ + ω 2 0 • Assume the underdamped case, where c < ω 0 . c 2 − ω 2 � • Roots λ = − c ± 0 = − c ± iη where � ω 2 0 − c 2 . η = • Fundamental set of solutions x 1 ( t ) = e − ct cos ηt and x 2 ( t ) = e − ct sin ηt Return

  7. 7 Inhomogeneous equation Inhomogeneous equation x ′′ + 2 cx ′ + ω 2 0 x = A cos ωt • Use the complex method. Solve z ′′ + 2 cz ′ + ω 2 0 z = Ae iωt . � Try z ( t ) = ae iωt . z ′′ + 2 cz ′ + ω 2 0 z = [( iω ) 2 + 2 c ( iω ) + ω 2 0 ] ae iωt . = P ( iω ) z � P ( iω ) = ( iω ) 2 + 2 c ( iω ) + ω 2 0 = [ ω 2 0 − ω 2 ] + 2 icω. 1 P ( iω ) Ae iωt . • Complex solution: z ( t ) = • Real solution: x p ( t ) = Re( z ( t )) . Return Previous

  8. 8 Example Example x ′′ + 5 x ′ + 4 x = 50 cos 3 t • P ( λ ) = λ 2 + 5 λ + 4 . � P ( iω ) = P (3 i ) = − 5 + 15 i 1 P ( iω ) · 50 cos 3 t • z ( t ) = = − [(cos 3 t − 3 sin 3 t ) + i (sin 3 t + 3 cos 3 t )] • x p ( t ) = Re( z ( t )) = 3 sin 3 t − cos 3 t. Return Particular solution

  9. 9 Transfer Function Transfer Function • Complex solution: 1 P ( iω ) Ae iωt = H ( iω ) Ae iωt . z ( t ) = 1 • H ( iω ) = P ( iω ) is called the transfer function . � We will write H ( iω ) = G ( ω ) e − iφ ( ω ) . ◮ G ( ω ) = | H ( iω ) | is the gain and φ is the phase . Return

  10. 10 • The characteristic polynomial P ( iω ) = Re iφ 0 − ω 2 ) 2 + 4 c 2 ω 2 � R = � ( ω 2 � ω 2 0 − ω 2 � � φ = arccot . 2 cω • Transfer Function P ( iω ) = 1 1 Re − iφ = G ( ω ) e − iφ . H ( iω ) = � The gain G ( ω ) = 1 1 R = 0 − ω 2 ) 2 + 4 c 2 ω 2 . � ( ω 2 � ω 2 0 − ω 2 � � The phase shift φ = arccot . 2 cω P ( iω ) Return

  11. 11 • The complex particular solution is z ( t ) = H ( iω ) Ae iωt = G ( ω ) e − iφ · Ae iωt = G ( ω ) Ae i ( ωt − φ ) . • The real particular solution is x p ( t ) = Re( z ( t )) = G ( ω ) A cos( ωt − φ ) . Return Transfer function Differential equation

  12. 12 • General Solution x ( t ) = x p ( t ) + x h ( t ) = G ( ω ) A cos( ωt − φ ) + e − ct [ C 1 cos ηt + C 2 sin ηt ] . • Transient term . � x h ( t ) = e − ct [ C 1 cos ηt + C 2 sin ηt ] . • Steady-state solution. � x p ( t ) = G ( ω ) A cos( ωt − φ ) . Return Homogeneous equation Particular solution

  13. 13 • Example: x ′′ + 5 x ′ + 4 x = A cos ωt 1 • G ( ω ) = and (4 − ω 2 ) 2 + 25 ω 2 � � 4 − ω 2 � φ = arccot . 5 ω � With ω = 3 , 1 √ G (3) = 10 ≈ 0 . 0632 5 φ = arccot( − 3 / 5) ≈ 2 . 1112 . � SS solution x p ( t ) = G (3) A cos(3 t − φ ) . Return Gain & phase

  14. 14 Steady-State Solution Steady-State Solution x p ( t ) = G ( ω ) A cos( ωt − φ ) . • The forcing function is A cos ωt . • The steady-state response is oscillatory. � The amplitude is G ( ω ) times the amplitude of the forcing term. � At the driving frequency. � With a phase shift of φ/ω . Return Steady-state solution Transfer

  15. 15 Gain Gain 1 G ( ω ) = 0 − ω 2 ) 2 + 4 c 2 ω 2 � ( ω 2 • Set s = ω ω = sω 0 or ω 0 c = Dω 0 D = 2 c . or 2 ω 0 Then G ( ω ) = 1 1 ω 2 (1 − s 2 ) 2 + D 2 s 2 � 0 Gain & phase

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend