multiple random variables joint probability density
play

Multiple Random Variables Joint Probability Density Let X and Y be - PowerPoint PPT Presentation

Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution ( ) P X x Y y function is F XY x , y . ( ) 1 , < x < , < y <


  1. Multiple Random Variables

  2. Joint Probability Density Let X and Y be two random variables. Their joint distribution ( ) ≡ P X ≤ x ∩ Y ≤ y ⎡ ⎤ function is F XY x , y ⎦ . ⎣ ( ) ≤ 1 , − ∞ < x < ∞ , − ∞ < y < ∞ 0 ≤ F XY x , y ( ) = F XY x , −∞ ( ) = F XY −∞ , y ( ) = 0 F XY −∞ , −∞ ( ) = 1 F XY ∞ , ∞ ( ) does not decrease if either x or y increases or both increase F XY x , y ( ) = F ( ) and F XY x , ∞ ( ) = F X x ( ) F XY ∞ , y Y y

  3. Joint Probability Density Joint distribution function for tossing two dice

  4. Joint Probability Density ( ) ∂ 2 ( ) = ( ) f XY x , y ∂ x ∂ y F XY x , y ( ) ≥ 0 , − ∞ < x < ∞ , − ∞ < y < ∞ f XY x , y ∞ ∞ y x ( ) dx ( ) = ( ) d α ∫ ∫ ∫ ∫ = 1 F XY x , y f XY α , β d β f XY x , y dy −∞ −∞ −∞ −∞ ∞ ∞ ( ) = ( ) dy ( ) = ( ) dx ∫ ∫ f X x f XY x , y and f Y y f XY x , y −∞ −∞ y 2 x 2 ( ) dx ∫ ∫ ⎡ ⎤ P x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 ⎦ = f XY x , y dy ⎣ y 1 x 1 ∞ ∞ ( ) = ( ) ( ) f XY x , y ( ) dx ∫ ∫ E g X , Y g x , y dy −∞ −∞

  5. Combinations of Two Random Variables Example X and Y are independent, identically distributed (i.i.d.) random variables with common PDF ( ) = e − x u x ( ) f Y y ( ) = e − y u y ( ) f X x Find the PDF of Z = X / Y . Since X and Y are never negative, Z is never negative. ( ) = P X / Y ≤ z ( ) = P X ≤ zY ∩ Y > 0 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎦ ⇒ F Z z ⎦ + P X ≥ zY ∩ Y < 0 F Z z ⎣ ⎣ ⎣ ⎦ ( ) = P X ≤ zY ∩ Y > 0 ⎡ ⎤ Since Y is never negative F Z z ⎣ ⎦

  6. Combinations of Two Random Variables ∞ zy ∞ zy ( ) = ( ) dxdy ∫ ∫ ∫ ∫ e − x e − y dxdy = F Z z f XY x , y −∞ −∞ 0 0 Using Leibnitz’s formula for differentiating an integral, ( ) ( ) ( ) ( ) ( ) ⎡ ⎤ b z b z ∂ g x , z db z da z ( ) − ( ) + d ( ) dx ( ) , z ( ) , z ∫ ∫ ⎢ ⎥ = g x , z g b z g a z dx ∂ z dz dz dz ⎢ ⎥ ( ) ( ) ⎣ ⎦ a z a z ∞ ( ) = ∂ ( ) = ∫ ye − zy e − y dy , z > 0 f Z z ∂ z F Z z 0 ( ) u z ( ) = f Z z ( ) 2 z + 1

  7. Combinations of Two Random Variables

  8. Combinations of Two Random Variables Example The joint PDF of X and Y is defined as ⎧ ) = 6 x , x ≥ 0, y ≥ 0, x + y ≤ 1 ( f XY x , y ⎨ 0 , otherwise ⎩ Define Z = X − Y . Find the PDF of Z .

  9. Combinations of Two Random Variables Given the constraints on X and Y , − 1 ≤ Z ≤ 1. Z = X − Y intersects X + Y = 1 at X = 1 + Z , Y = 1 − Z 2 2 ( ) /2 ( ) /2 1 − z 1 − z 1 − y 1 − y dy ( ) = 1 − ∫ ∫ ∫ ⎡ ⎤ For 0 ≤ z ≤ 1, F Z z = 1 − 3 x 2 6 xdx dy ⎣ ⎦ y + z y + z 0 0 ( ) ⇒ f Z z ( ) = 1 − 3 ( ) 1 − z 2 ( ) = 3 ( ) 1 + 3 z ( ) 4 1 − z 4 1 − z F Z z

  10. Combinations of Two Random Variables For − 1 ≤ z ≤ 0 ( ) /2 ( ) /2 ( ) /2 1 − z 1 − z 1 − z y + z y + z dy 2 dy ( ) = 2 ( ) ∫ ∫ ∫ ∫ ⎡ ⎤ = 6 = 6 y + z x 2 F Z z 6 xdx dy ⎣ ⎦ 0 − z − z − z 0 ( ) ( ) 3 2 1 + z 3 1 + z ( ) = ( ) = ⇒ f Z z F Z z 4 4

  11. Joint Probability Density ⎛ ⎞ ⎛ ⎞ rect x − X 0 y − Y 0 ( ) = 1 Let f XY x , y ⎟ rect ⎜ ⎜ ⎟ w X w Y ⎝ w X ⎠ ⎝ w Y ⎠ ∞ ∞ ( ) = ( ) dx ∫ ∫ = X 0 E X x f XY x , y dy −∞ −∞ ( ) = Y 0 E Y ∞ ∞ ( ) = ( ) dx ∫ ∫ = X 0 Y 0 E XY xy f XY x , y dy −∞ −∞ ⎛ ⎞ ∞ rect x − X 0 ( ) = ( ) dy = 1 ∫ f X x f XY x , y ⎜ ⎟ w X ⎝ w X ⎠ −∞

  12. Joint Probability Density ( ) ∩ A ⎡ ⎤ X ≤ x P ( ) = ⎣ ⎦ Conditional Probability F X | A x ⎡ ⎣ ⎤ P A ⎦ { } Let A = Y ≤ y ( ) ⎡ ⎤ P X ≤ x ∩ Y ≤ y F XY x , y ( ) = ⎣ ⎦ = F X | Y ≤ y x ( ) ⎡ ⎤ P Y ≤ y F Y y ⎣ ⎦ { } Let A = y 1 < Y ≤ y 2 ( ) − F XY x , y 1 ( ) F XY x , y 2 ( ) = F X | y 1 < Y ≤ y 2 x ( ) − F ( ) F Y y 2 Y y 1

  13. Joint Probability Density { } Let A = Y = y ( ) ∂ ( ) ( ) − F XY x , y ( ) ∂ y F XY x , y F XY x , y + Δ y ( ) = lim = F X | Y = y x ( ) − F ( ) ( ) Y y + Δ y d ( ) F Y y Δ y → 0 dy F Y y ( ) ∂ ( ) ( ) ∂ y F XY x , y ( ) = f XY x , y ( ) = ∂ ( ) = ( ) F X | Y = y x , f X | Y = y x ∂ x F X | Y = y x ( ) ( ) f Y y f Y y ( ) f XY x , y ( ) = Similarly f Y | X = x y ( ) f X x

  14. Joint Probability Density ( ) ( ) f XY x , y f XY x , y ( ) = ( ) = In a simplified notation f X | Y x and f Y | X y ( ) ( ) f Y y f X x ( ) f Y y ( ) = f Y | X y ( ) f X x ( ) Bayes’ Theorem f X | Y x Marginal PDF’s from joint or conditional PDF’s ∞ ∞ ( ) = ( ) dy ( ) f Y y ( ) dy ∫ ∫ = f X x f XY x , y f X | Y x −∞ −∞ ∞ ∞ ( ) = ( ) dx ( ) f X x ( ) dx ∫ ∫ = f Y y f XY x , y f Y | X y −∞ −∞

  15. Joint Probability Density Example: Let a message X with a known PDF be corrupted by additive noise N also with known pdf and received as Y = X + N . Then the best estimate that can be made of the message X is the value at the peak of the conditional PDF, ( ) f X x ( ) f Y | X y ( ) = f X | Y x ( ) f Y y

  16. Joint Probability Density Let N have the PDF, Then, for any known value of X , the PDF of Y would be ( ) , the conditional PDF of Y given Therefore if the PDF of N is f N n ( ) X is f N y − X

  17. Joint Probability Density Using Bayes’ theorem, ( ) f X x ( ) ( ) f X x ( ) f N y − x f Y | X y ( ) = = f X | Y x ( ) ( ) f Y y f Y y ( ) f X x ( ) ( ) f X x ( ) f N y − x f N y − x = = ∞ ∞ ( ) f X x ( ) dx ( ) f X x ( ) dx ∫ ∫ f N y − x f Y | X y −∞ −∞ Now the conditional PDF of X given Y can be computed.

  18. Joint Probability Density To make the example concrete let ( ) − x /E X ( ) = e ( ) f N n ( ) = 1 − n 2 /2 σ N 2 f X x u x e ( ) E X σ N 2 π Then the conditional pdf of X given Y is found to be ⎡ ⎤ ⎡ ⎤ ⎛ ⎞ σ N 2 y − σ N 2 y − ⎢ ⎥ exp ⎢ ⎥ ( ) ( ) ( ) ⎜ ⎟ 2E 2 X E X ⎢ ⎥ E X ⎢ ⎥ ( ) = ⎣ ⎦ ⎜ ⎟ 1 + erf f Y y ( ) ⎢ ⎥ ⎜ ⎟ 2E X 2 σ N ⎢ ⎥ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ where erf is the error function .

  19. Joint Probability Density

  20. Independent Random Variables If two random variables X and Y are independent then ( ) ( ) f XY x , y f XY x , y ( ) = f X x ( ) = ( ) = f Y y ( ) = f X | Y x and f Y | X y ( ) ( ) f Y y f X x ( ) = f X x ( ) f Y y ( ) and their correlation is the product Therefore f XY x , y of their expected values. ∞ ∞ ∞ ∞ ( ) = ( ) dx ( ) dy ( ) dx ( ) E Y ( ) ∫ ∫ ∫ ∫ = = E X E XY xy f XY x , y dy y f Y y x f X x −∞ −∞ −∞ −∞

  21. Independent Random Variables Covariance ( ) ( ) ⎛ ⎞ * ⎡ ⎤ ⎡ ⎤ σ XY ≡ E X − E X ⎦ Y − E Y ⎣ ⎣ ⎦ ⎝ ⎠ ( ) f XY x , y ∞ ∞ ( ) y * − E Y * ( ) ( ) ( ) dx ∫ ∫ σ XY = x − E X dy −∞ −∞ ( ) − E X ( ) ( ) E Y * σ XY = E XY * ( ) − E X ( ) = 0 ( ) E Y * ( ) E Y * If X and Y are independent, σ XY = E X

  22. Independent Random Variables Correlation Coefficient ( ) ( ) Y * − E Y * ⎛ ⎞ X − E X ρ XY = E × ⎜ ⎟ ⎜ σ X σ Y ⎟ ⎝ ⎠ ( ) ( ) y * − E Y * ⎛ ⎞ ⎛ ⎞ x − E X ∞ ∞ ( ) dx ∫ ∫ ρ XY = ⎜ ⎟ ⎟ f XY x , y dy ⎜ ⎟ σ X ⎜ σ Y ⎝ ⎠ ⎝ ⎠ −∞ −∞ ( ) − E X ( ) ( ) E Y * E XY * = σ XY ρ XY = σ X σ Y σ X σ Y If X and Y are independent ρ = 0. If they are perfectly positively correlated ρ = + 1 and if they are perfectly negatively correlated ρ = − 1.

  23. Independent Random Variables If two random variables are independent, their covariance is zero. However, if two random variables have a zero covariance that does not mean they are necessarily independent. Independence ⇒ Zero Covariance Zero Covariance ⇒ Independence

  24. Independent Random Variables In the traditional jargon of random variable analysis, two “uncorrelated” random variables have a covariance of zero. Unfortunately, this does not also imply that their correlation is zero. If their correlation is zero they are said to be orthogonal . X and Y are "Uncorrelated" ⇒ σ XY = 0 ( ) = 0 X and Y are "Uncorrelated" ⇒ E XY

  25. Independent Random Variables The variance of a sum of random variables X and Y is 2 + σ Y 2 + 2 σ XY = σ X 2 + σ Y 2 + 2 ρ XY σ X σ Y σ X + Y = σ X 2 If Z is a linear combination of random variables X i N ∑ Z = a 0 + a i X i i = 1 N ( ) = a 0 + ( ) ∑ then E Z a i E X i i = 1 N N N N N 2 = ∑ ∑ ∑ ∑ ∑ σ Z a i a j σ X i X j = 2 σ X i + a i a j σ X i X j 2 a i i = 1 j = 1 i = 1 i = 1 j = 1 i ≠ j

  26. Independent Random Variables If the X ’s are all independent of each other, the variance of the linear combination is a linear combination of the variances. N 2 = ∑ σ Z 2 σ X i 2 a i i = 1 If Z is simply the sum of the X ’s, and the X ’s are all independent of each other, then the variance of the sum is the sum of the variances. N 2 = ∑ σ Z σ X i 2 i = 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend