definition of continuity of a function of two variables
play

Definition of Continuity of a Function of Two Variables A function - PowerPoint PPT Presentation

Definition of Continuity of a Function of Two Variables A function of two variables is continuous at a point (a,b) in an open region R if f(a,b) is equal to the limit of f(x,y) as (x,y) approaches (a,b). In limit notation: lim f ( x ,


  1. Definition of Continuity of a Function of Two Variables A function of two variables is continuous at a point (a,b) in an open region R if f(a,b) is equal to the limit of f(x,y) as (x,y) approaches (a,b). In limit notation:  lim f ( x , y ) f ( a , b ).  ( x , y ) ( a , b ) The function f is continuous in the open region R if f is continuous at every point in R. The following results are presented without proof. As was the case in functions of one variable, continuity is “ user friendly ” . In other words, if k is a real number and f and g are continuous functions at (a,b) then the functions below are also continuous at (a,b):     kf ( x , y ) k [ f ( x , y )] f g ( x , y ) f ( x , y ) g ( x , y ) f ( x , y )    fg ( x , y ) f ( x , y )[ g ( x , y )] f / g ( x , y ) if g(a, b) 0 g ( x , y )

  2. Example 1. Find the limit and discuss the continuity of the function. x lim   2 x y ( x , y ) ( 1 , 2 ) Solution x 1 1 1    lim    2 ( x , y ) ( 1 , 2 ) 2 x y 2 ( 1 ) 2 4 The function will be continuous when 2x+y > 0. Example 2. Find the limit and discuss the continuity x of the function. lim   2 x y ( x , y ) ( 1 , 2 ) Solution x 1 1   lim    2 x y 2 ( 1 ) 2 4 ( x , y ) ( 1 , 2 )  y  The function will be continuous when 2 x 0 . The function will not be defined when y = -2x.

  3. Partial Derivatives of a Function of Several Variables The partial derivative, with respect to x of a function  z f ( , x y ) is:      z z f x ( x y , ) f x y ( , )    x z lim lim x        x x x x 0 x 0 z  f ( x , y ) The partial derivative of the function with respect to x is the ordinary derivative with respect to x calculated on the assumption that y is constant and vice versa.

  4. Example For the following functions, find the partial derivatives:   z z ,   x y   2 sin  i z x y     2 2 ii z x y    y    1   iii z tan   x    y iv z x

  5. Solution   2 sin  i z x y     z z 2 cos x y 2 sin x y   y x     2 2 ii z x y     z 2 x z 2 y   x 2  2 y  2 2 2 x y 2 x y

  6.    y    1   iii z tan   x     2 / z 1 x z y x /    2  y  2 1 ( / ) y x x 1 ( / ) y x    y iv z x     z z  y 1 y x ln x y x   y x

  7. Remark: The partial derivatives of a function of any number of variables are determined similarly as two variables. Example    2 2 3 u x y xtz Find the derivatives of with respect to x, y, z and t. Solution   u u    3 2 y 2 x tz   x y   u u   2 3 3 xtz xz   z t

  8. Example      3 sin z y x y / xz yz 3 z show that If x y Solution        3 2 z y cos x y / 1/ y y cos x y / x          2 3 2 z 3 y sin x y / y cos x y / x y / y   2 cos  x z x y x y / x +       3 2 y z 3 y sin x y / x y cos x y / y     3 3 y sin x y / 3 z

  9. Partial Derivatives of Higher Orders: z  f ( x , y ) The second order partial derivatives of if they exist, are written as:    2 2 z f x y ( , )     z f ( , x y ) f ( , x y )    xx xx x 2 2 x x x 2 ( ,    2 z f x y )     z f ( , x y ) f ( , x y )      xy xy x y x y y x 2 ( ,    2 z f x y )     z f ( , x y ) f ( , x y )      yx yx y x y x x y    2 2 z f x y ( , )     z f ( , x y ) f ( , x y )    yy yy y 2 2 y y y

  10. Example   xy z e x . Find the four 2nd order partial derivatives of Solution   z z    xy xy xe ye 1   y x   2 2 z z   2 xy 2 xy x e y e  2  y 2 x  2 z  2   z xy xy xye e   xy xy xye e   x y   y x

  11. Example  4 2  u  2 x y u z e . if Compute    2 z y x Solution  u   2 2 x y z e  x  2 u   2 2 x y z e  2 x  3 u   2 2 x y 2 yz e   2 y x  4 u   2 x y 4 yze    2 z y x

  12. Theorem : z  f ( x , y ) If the function and its partial derivatives are defined and continuous at any point and in some neighborhood of it, then at this point   2 2 f f      y x x y This is true for a function of any number of variables and any number of successive partial derivatives.

  13. The Chain Rule: Let z be a function of two independent variables u and v ,  z f u v ( , ) and let u and v be continuous functions of the independent variables x , y :     u ( x , y ), v ( x , y ). then:      z z u z v        x u x v x      z z u z v        y u y v y

  14. x u x u u y y z u z x v z x v v v y y

  15. Example  y z     2 3 Given . Find z u 2 v , u xy v , .  x x Solution        z z u z v y      2   2 uy 6 v        x u x v x 2 x 3 6 y   2 2 xy 4 x y  2 2 u y 6 v 2 x

  16. Example       z 2 2 x y 2 z ln( u v ), u e , v x Given . Find .  x Solution      2 u 1 z z u z v      2 x y e 2 x        2 2 x u x v x u v u v 2   2  x y ( ue x )  2 u v e  2 2 u x y 1 2 x   2 2 u v u v

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend