8 one function of two random variables
play

8. One Function of Two Random Variables Given two random variables X - PowerPoint PPT Presentation

8. One Function of Two Random Variables Given two random variables X and Y and a function g ( x , y ), we form a new random variable Z as (8-1) Z = g ( X , Y ). f XY ( x , y ), Given the joint p.d.f how does one


  1. 8. One Function of Two Random Variables Given two random variables X and Y and a function g ( x , y ), we form a new random variable Z as (8-1) Z = g ( X , Y ). f XY ( x , y ), Given the joint p.d.f how does one obtain f Z ( z ), the p.d.f of Z ? Problems of this type are of interest from a practical standpoint. For example, a receiver output signal usually consists of the desired signal buried in noise, and the above formulation in that case reduces to Z = X + Y . 1 PILLAI

  2. It is important to know the statistics of the incoming signal for proper receiver design. In this context, we shall analyze problems of the following type: X + Y max( X , Y ) X − Y Z = min( X , Y ) g ( X , Y ) XY (8-2) X / Y X + 2 2 Y − tan 1 ( X / Y ) Referring back to (8-1), to start with [ ] ( ) ( ) = ξ ≤ = ≤ = ∈ F ( z ) P Z ( ) z P g ( X , Y ) z P ( X , Y ) D Z z ∫ ∫ = f ( x , y ) dxdy , (8-3) XY ∈ 2 x , y D z PILLAI

  3. where in the XY plane represents the region such D z ≤ that is satisfied. Note that need not be simply g ( x , y ) z D z connected (Fig. 8.1). From (8-3), to determine it is F Z ( z ) enough to find the region for every z , and then evaluate D z the integral there. We shall illustrate this method through various examples. Y D z D z X 3 Fig. 8.1 PILLAI

  4. Example 8.1: Z = X + Y. Find f Z ( z ). Solution: ) ∫ + ∞ − ( z y ∫ (8-4) = + ≤ = F ( z ) P X Y z f ( x , y ) dxdy , Z XY = −∞ = −∞ y x since the region of the xy plane where is the + ≤ x y z D z shaded area in Fig. 8.2 to the left of the line + = x y z . Integrating over the horizontal strip along the x -axis first (inner integral) followed by sliding that strip along the y -axis + ∞ from to (outer integral) we cover the entire shaded − ∞ area. y = − x z y x 4 Fig. 8.2 PILLAI

  5. We can find by differentiating directly. In this f Z ( z ) F Z ( z ) context, it is useful to recall the differentiation rule in (7- 15) - (7-16) due to Leibnitz. Suppose b ( z ) ∫ = H ( z ) h ( x , z ) dx . (8-5) a ( z ) Then ∂ dH ( z ) db ( z ) da ( z ) ) ∫ h ( x , z ) ( ) ( b ( z ) = − + h b ( z ), z h a ( z ), z dx . (8-6) ∂ dz dz dz z a ( z ) Using (8-6) in (8-4) we get ∂ ∂     f ( , ) x y +∞ − +∞ − z y z y ∫ ∫ ∫ ∫ = = − − + f ( ) z f ( , ) x y dx dy f ( z y y , ) 0 XY d y     Z XY XY ∂ ∂  z   z  −∞ −∞ −∞ −∞ +∞ ∫ = − f ( z y y dy , ) . (8-7) XY −∞ Alternatively, the integration in (8-4) can be carried out first along the y -axis followed by the x -axis as in Fig. 8.3. 5 PILLAI

  6. In that case + ∞ − z x y ∫ ∫ = F ( z ) f ( x , y ) dxdy , (8-8) Z XY = −∞ = −∞ x y and differentiation of (8-8) = − y z x gives ∂ dF ( z )   + ∞ − z x ∫ ∫ = = f ( z ) Z  f ( x , y ) dy  dx x Z XY ∂ dz  z  = −∞ = −∞ x y + ∞ ∫ = − (8-9) f ( x , z x ) dx . Fig. 8.3 XY = −∞ x If X and Y are independent, then (8-10) = f ( x , y ) f ( x ) f ( y ) XY X Y and inserting (8-10) into (8-8) and (8-9), we get + ∞ + ∞ ∫ ∫ = − = − (8-11) f ( z ) f ( z y ) f ( y ) dy f ( x ) f ( z x ) dx . Z X Y X Y = −∞ = −∞ y x 6 PILLAI

  7. The above integral is the standard convolution of the functions and expressed two different ways. We f X ( z ) f Y ( z ) thus reach the following conclusion: If two r.vs are independent, then the density of their sum equals the convolution of their density functions. As a special case, suppose that for and = = < f Y ( y ) 0 f X ( x ) 0 x 0 for then we can make use of Fig. 8.4 to determine the < y 0 , new limits for D . z y ( z , 0 ) = − x z y x ( 0 , z ) 7 Fig. 8.4 PILLAI

  8. In that case − z z y ∫ ∫ = F ( z ) f ( x , y ) dxdy Z XY = = y 0 x 0 or  z ∫ ∂    − > f ( z y , y ) dy , z 0 , − z z y ∫ ∫ = = f ( z )  f ( x , y ) dx  dy  XY (8-12) 0 Z XY ∂  z   = = ≤ y 0 x 0 0 , z 0 .  On the other hand, by considering vertical strips first in Fig. 8.4, we get − z z x ∫ ∫ = F ( z ) f ( x , y ) dydx Z XY = = x 0 y 0 or  z ∫  − > f ( x ) f ( z x ) dx , z 0 , z ∫ = − = f ( z ) f ( x , z x ) dx  X Y = (8-13) y 0 Z XY =  x 0 ≤ 0 , z 0 ,  if X and Y are independent random variables. 8 PILLAI

  9. Example 8.2: Suppose X and Y are independent exponential r.vs with common parameter λ , and let Z = X + Y . Determine f Z ( z ). − λ − λ Solution: We have = λ = λ x y (8-14) f ( x ) e U ( x ), f ( y ) e U ( y ), X Y and we can make use of (13) to obtain the p.d.f of Z = X + Y . z z ∫ ∫ (8-15) = λ − λ − λ − = λ − λ = λ − λ 2 x ( z x ) 2 z 2 z f ( z ) e e dx e dx z e U ( z ). Z 0 0 As the next example shows, care should be taken in using the convolution formula for r.vs with finite range. Example 8.3: X and Y are independent uniform r.vs in the common interval (0,1). Determine where Z = X + Y . f Z ( z ), Solution: Clearly, here, and as Fig. 8.5 = + ⇒ < < Z X Y 0 z 2 shows there are two cases of z for which the shaded areas are quite different in shape and they should be considered 9 separately. PILLAI

  10. y y = − x z y = − x z y x x < z < ( b ) 1 2 < z < ( a ) 0 1 Fig. 8.5 For ≤ z < 0 1 , 2 z − z z y z (8-16) ∫ ∫ ∫ = = − = ≤ < F ( z ) 1 dxdy ( z y ) dy , 0 z 1 . Z 2 = = = y 0 x 0 y 0 ≤ z < For notice that it is easy to deal with the unshaded 1 2 , region. In that case ( ) 1 1 ∫ ∫ = − > = − F ( z ) 1 P Z z 1 1 dxdy Z = − = − y z 1 x z y − 2 ( 2 z ) (8-17) 1 ∫ = − − + = − ≤ < 1 ( 1 z y ) dy 1 , 1 z 2 . 10 2 = − y z 1 PILLAI

  11. Using (8-16) - (8-17), we obtain ≤ <  z 0 z 1 , dF ( z ) = = f ( z ) Z (8-18)  Z − ≤ < dz 2 z , 1 z 2 .  By direct convolution of and we obtain the f X ( x ) f Y ( y ), same result as above. In fact, for (Fig. 8.6(a)) ≤ z < 0 1 = ∫ z ∫ − = = f ( z ) f ( z x ) f ( x ) dx 1 dx z . (8-19) Z X Y 0 and for (Fig. 8.6(b)) ≤ z < 1 2 = ∫ − 1 = − (8-20) f ( z ) 1 dx 2 z . Z z 1 Fig 8.6 (c) shows which agrees with the convolution f Z ( z ) of two rectangular waveforms as well. 11 PILLAI

  12. − f ( z x ) f ( x ) − f X ( z x ) f Y ( x ) X Y x x x z z − z 1 1 ≤ z < ( a ) 0 1 − f X ( z x ) − f Y ( x ) f ( z x ) f ( x ) X Y x x x z − z 1 1 − z 1 1 ≤ z < ( b ) 1 2 f Z ( z ) z 2 0 1 Fig. 8.6 ( c ) 12 PILLAI

  13. = − Example 8.3: Let Determine its p.d.f Z X Y . f Z ( z ). Solution: From (8-3) and Fig. 8.7 ) ∫ + ∞ + ( z y ∫ = − ≤ = F ( z ) P X Y z f ( x , y ) dxdy Z XY = −∞ = −∞ y x and hence ∂   dF ( ) z +∞ + +∞ z y ∫ ∫ ∫ = = = + f ( ) z Z f ( , ) x y dx dy f ( y z y dy , ) . (8-21)   Z XY XY ∂ dz  z  =−∞ =−∞ −∞ y x If X and Y are independent, then the above formula reduces to +∞ ∫ (8-22) = + = − ⊗ f ( ) z f ( z y f ) ( ) y dy f ( z ) f ( ), y Z X Y X Y −∞ which represents the convolution of with f X − ( z ) f Y ( z ). y − = x y z y = + x y z x 13 Fig. 8.7 PILLAI

  14. As a special case, suppose = < = < f ( x ) 0 , x 0 , and f ( y ) 0 , y 0 . X Y In this case, Z can be negative as well as positive, and that gives rise to two situations that should be analyzed < ≥ separately, since the region of integration for and z 0 z 0 are quite different. For from Fig. 8.8 (a) ≥ z 0 , y + ∞ + z y ∫ ∫ = F ( z ) f ( x , y ) dxdy = + x z y Z XY = = y 0 x 0 x z and for from Fig 8.8 (b) < z 0 , − z (a) + ∞ + z y ∫ ∫ y = F ( z ) f ( x , y ) dxdy Z XY = − = y z x 0 = + x z y After differentiation, this gives − z  + ∞ ∫ + ≥ f ( z y , y ) dy , z 0 ,  x XY = (8-23) f ( z )  0 + ∞ Z Fig. 8.8 (b) ∫ + <  f ( z y , y ) dy , z 0 .  XY − z 14 PILLAI

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend