multifractal analysis an example with two different olsen
play

Multifractal analysis: an example with two different Olsens cutoff - PowerPoint PPT Presentation

Multifractal analysis: an example with two different Olsens cutoff functions Jacques Peyri` ere, Paris-Sud University and BUAA CUHK, December 14, 2012 Setting 1 General results 2 An example 3 Joint work with Fathi Ben Nasr to appear


  1. Multifractal analysis: an example with two different Olsen’s cutoff functions Jacques Peyri` ere, Paris-Sud University and BUAA CUHK, December 14, 2012 Setting 1 General results 2 An example 3 Joint work with Fathi Ben Nasr to appear in Revista Matem´ atica Iberoamericana Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 1 / 28

  2. Besicovitch spaces ( X , d): a metric space having the Besicovitch property: There exists an integer constant C B such that one can extract C B countable � � { B j , k } k families 1 ≤ j ≤ C B from any collection B of balls so that � B j , k contains the centers of the elements of B , 1 j , k for any j and k � = k ′ , B j , k ∩ B j , k ′ = ∅ . 2 B( x , r ) stands for the open ball B( x , r ) = { y ∈ X ; d( x , y ) < r } . The letter B with or without subscript will implicitly stand for such a ball. When dealing with a collection of balls { B i } i ∈ I the following notation will implicitly be assumed: B i = B( x i , r i ). Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 2 / 28

  3. Coverings and packings δ -cover of E ⊂ X : a collection of balls of radii not exceeding δ whose union contains E . A centered cover of E is a cover of E consisting in balls whose centers belong to E . δ -packing of E ⊂ X : a collection of disjoint balls of radii not exceeding δ centered in E . Besicovitch δ -cover of E ⊂ X : a centered δ -cover of E which can be decomposed into C B packings. Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 3 / 28

  4. Packing measures and dimension �� � t r t δ ( E ) = sup j ; { B j } δ -packing of E , P t ( E ) t = lim δ ( E ) , P δ ց 0 P �� � � t ( E j ) ; E ⊂ P t ( E ) = inf , P E j t ( E ) = 0 } = sup { t ∈ R ; P t ( E ) = ∞} ∆( E ) = inf { t ∈ R ; P inf { t ∈ R ; P t ( E ) = 0 } = sup { t ∈ R ; P t ( E ) = ∞} dim P E = One has ∆( E ) = dim B E . Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 4 / 28

  5. Centered Hausdorff measures �� � t r t H δ ( E ) = inf j ; { B j } centered δ -cover of E , t ( E ) t H = δ ց 0 H lim δ ( E ) , � � t ( F ) ; F ⊂ E H t ( E ) = sup . H dim H E = inf { t ∈ R ; H t ( E ) = 0 } = sup { t ∈ R ; H t ( E ) = ∞} Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 5 / 28

  6. Lower bounds for dimensions ν : a non-negative function defined on the set of balls of X . �� � ν δ ( E ) = inf ν (B j ) : { B j } centered δ -cover of E ν ( E ) = δ ց 0 ν δ ( E ) lim ν ♯ ( E ) = sup ν ( F ) F ⊂ E Lemma If ν ♯ ( E ) > 0 , then � � log ν B( x , r ) dim H E ≥ x ∈ E , ν ♯ lim inf , (1) ess sup log r r ց 0 � � log ν B( x , r ) dim P E ≥ x ∈ E , ν ♯ lim sup , (2) ess sup log r r ց 0 Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 6 / 28

  7. � � log ν B( x , r ) To prove (1), take γ < ess sup x ∈ E , ν ♯ lim inf r ց 0 and consider the set log r � � � � log ν B( x , r ) . We have ν ♯ ( F ) > 0. For all x ∈ F , F = x ∈ E ; lim inf r ց 0 > γ log r � � ≤ r γ . Consider the there exists δ > 0 such that, for all r ≤ δ , one has ν B( x , r ) set � � � ≤ r γ � F ( n ) = x ∈ F ; ∀ r ≤ 1 / n , ν B( x , r ) . We have F = � n ≥ 1 F ( n ). Since ν ♯ ( F ) > 0, there exists n such that ν ♯ � � F ( n ) > 0, and therefore there is a subset G of F ( n ) such that ν ( G ) > 0. Then for any centered δ -cover { B j } of G , with δ ≤ 1 / n , one has � � r γ ν δ ( G ) ≤ ν (B j ) ≤ j . Therefore, γ ν δ ( G ) ≤ δ ( G ) , H and γ ( G ) ≤ H γ ( G ) , 0 < ν ( G ) ≤ H which implies dim H E ≥ dim H G ≥ γ . Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 7 / 28

  8. � � log ν B( x , r ) To prove (2), take γ < ess sup x ∈ E , ν ♯ lim sup r ց 0 and consider the set log r � � � � log ν B( x , r ) . We have ν ♯ ( F ) > 0, so there exists F = x ∈ E ; lim sup r ց 0 > γ log r a subset F ′ of F such that ν ( F ′ ) > 0. Let G be a subset of F ′ . Then, for � � ≤ r γ . Then for all x ∈ G , for all δ > 0, there exists r ≤ δ such that ν B( x , r ) � � all δ , by using the Besicovitch property, there exists a collection { B j , k } j 1 ≤ k ≤ C B of δ -packings of G which together cover G and such that ν (B j , k ) ≤ r γ j , k . Then one has � � r γ ν δ ( G ) ≤ ν (B j , k ) ≤ j , k . j , k � j , k ≥ 1 r γ This implies that there exists k such that ν δ ( G ). So we have C B j C B ν ( G ). So if F ′ = � G j , one has γ γ ( G ) ≥ 1 1 δ ( G ) ≥ C B ν δ ( G ). This implies P P � � γ ( G j ) ≥ 1 ν ( G j ) ≥ 1 ν ( F ′ ) > 0 , P C B C B so P γ ( F ′ ) > 0. Therefore, dim P F ≥ γ . Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 8 / 28

  9. Level sets of local H¨ older exponents µ : a non-negative function of balls of X such that µ (B) = 0 and B ′ ⊂ B = ⇒ µ (B ′ ) = 0. S µ , the support of µ , is the complement of � µ (B)=0 B. � � � � log µ B( x , r ) x ∈ S µ ; lim sup ≤ α X µ ( α ) = , log r r ց 0 � � � � log µ B( x , r ) X µ ( α ) = x ∈ S µ ; lim inf ≥ α , log r r ց 0 X µ ( α, β ) = X µ ( α ) ∩ X µ ( β ) , and X µ ( α ) = X µ ( α ) ∩ X µ ( α ) . Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 9 / 28

  10. Olsen’s packing measures � � ∗ � q , t j µ (B j ) q ; { B j } δ -packing of E r t P µ,δ ( E ) = sup , where ∗ means that one only sums the terms for which µ (B j ) � = 0, q , t q , t P µ ( E ) = δ ց 0 P lim µ,δ ( E ) , �� � � q , t P q , t µ ( E ) = inf P µ ( E j ) ; E ⊂ , E j q , t q , t τ µ ( q ) = inf { t ∈ R ; P µ (S µ ) = 0 } = sup { t ∈ R ; P µ (S µ ) = ∞} inf { t ∈ R ; P q , t µ (S µ ) = 0 } = sup { t ∈ R ; P q , t B µ ( q ) = µ (S µ ) = ∞} τ µ and B µ are convex. Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 10 / 28

  11. Alternate definition of τ µ Fix λ < 1 and define � � � ∗ � m � µ k (B j ) q k ; { B j } packing of E with λδ < r j ≤ δ P q , t r t µ,δ ( E ) = sup , j k =1 � � P q , t P q , t µ ( E ) = lim µ,δ ( E ) , δ ց 0 and � � t ∈ R ; � P q , t µ ( E ) = + ∞ τ µ, E ( q ) � = sup . Proposition For any λ < 1 , one has � τ µ, S µ = τ µ and τ µ ( q ) = � � � m ∗ � − 1 µ k (B j ) q k ; { B j } packing of S µ with λδ < r j ≤ δ lim log δ log sup . δ ց 0 k =1 Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 11 / 28

  12. Olsen’s Hausdorff measures � � � ∗ q , t j µ (B j ) q ; { B j } centered δ -cover of E r t H µ,δ ( E ) = inf , q , t q , t H µ ( E ) = δ ց 0 H lim µ,δ ( E ) , � � q , t H q , t ( E ) = sup H µ ( F ) ; F ⊂ E . µ b µ ( q ) = inf { t ∈ R ; H q , t (S µ ) = 0 } = sup { t ∈ R ; H q , t (S µ ) = ∞} µ µ In general, b µ is not convex. One always has b µ ≤ B µ ≤ τ µ . Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 12 / 28

  13. Legendre transform: f ∗ ( y ) = inf x ∈ R xy + f ( x ). Theorem (Olsen, Ben Nasr-Bhouri-Heurteaux) dim H X α ≤ b ∗ ( α ) . 1 dim P X α ≤ B ∗ ( α ) . 2 If − α = B ′ ( q ) exists and dim H X α = B ∗ ( q ) , then B ( q ) = b ( q ) . 3 If for some q, H q , B ( q ) (S µ ) > 0 and − α = B ′ ( q ) exists, then 4 µ r ∈ R B ( r ) + α r = B ( q ) − qB ′ ( q ) . dim H X ( α ) = inf Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 13 / 28

  14. Main lemma � � � ∗ q , t r t j µ (B j ) q ν (B j ) ; { B j } δ -packing of E Q µ,ν,δ ( E ) = sup , q , t q , t Q µ,ν ( E ) = δ ց 0 Q lim µ,ν,δ ( E ) , �� � � Q µ,ν ( E ) = inf Q µ,ν ( E j ) : E ⊂ . E j q , t q , t ϕ µ,ν ( q ) = inf { t ∈ R ; Q µ,ν (S µ ) = 0 } = sup { t ∈ R ; Q µ,ν (S µ ) = ∞} inf { t ∈ R ; Q q , t µ,ν (S µ ) = 0 } = sup { t ∈ R ; Q q , t ϕ µ,ν ( q ) = µ,ν (S µ ) = ∞} Lemma Assume that ϕ µ,ν (0) = 0 and ν ♯ (S µ ) > 0 . Then one has ν ♯ � �� � C X µ − ϕ ′ r (0) , − ϕ ′ l (0) = 0 , The same result holds with ϕ µ,ν . Jacques Peyri` ere (F. Ben Nasr & J. Peyri` ere) Multifractal b � = B CUHK, December 14, 2012 14 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend