Example 1 � ln x x dx
Example 1 � ln x x dx We make the substitution:
Example 1 � ln x x dx We make the substitution: u = ln x
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x x dx =
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x � x dx = u
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x u . du � x dx = dx
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x u . du � x dx = dx dx
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x u . du � ✚ x dx = dx ✚ dx ✚ ✚
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x u . du � � ✚ x dx = dx ✚ dx = udu ✚ ✚
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x udu = u 2 � u . du � ✚ dx ✚ x dx = dx = 2 + C ✚ ✚
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x udu = u 2 � u . du � ✚ dx ✚ x dx = dx = 2 + C ✚ ✚ Now we substitute back:
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x udu = u 2 � u . du � ✚ dx ✚ x dx = dx = 2 + C ✚ ✚ Now we substitute back: � ln x x dx =
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x udu = u 2 � u . du � ✚ dx ✚ x dx = dx = 2 + C ✚ ✚ Now we substitute back: � ln x x dx = (ln x ) 2 + C 2
Example 1 � ln x x dx We make the substitution: du dx = 1 u = ln x , x � ln x udu = u 2 � u . du � ✚ dx ✚ x dx = dx = 2 + C ✚ ✚ Now we substitute back: � ln x x dx = (ln x ) 2 + C 2
Example 2 e x � 1 + e 2 x dx
Example 2 e x � 1 + e 2 x dx We can write this integral as:
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x 1 + e 2 x dx =
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution:
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: u = e x ,
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x � 1 + ( e x ) 2 =
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 � � 1 + ( e x ) 2 = 1 + u 2 .
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 + u 2 . du 1 � � 1 + ( e x ) 2 = dx
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 + u 2 . du 1 � � 1 + ( e x ) 2 = dx dx
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 . du � � 1 + ( e x ) 2 = dx dx e 2 x � ✒ 1 + � u 2
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x ✁ ✕ � e x � 1 du ✁ 1 + ( e x ) 2 = dx dx 1 + u 2 . ✁
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 + u 2 . du 1 � � 1 + ( e x ) 2 = dx dx
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 + u 2 . du 1 � � ✚ 1 + ( e x ) 2 = dx ✚ dx ✚ ✚
Example 2 e x � 1 + e 2 x dx We can write this integral as: � e x � e x 1 + e 2 x dx = 1 + ( e x ) 2 So, we make the substitution: du u = e x , dx = e x e x 1 + u 2 . du 1 du � � � ✚ 1 + ( e x ) 2 = dx ✚ dx = ✚ ✚ 1 + u 2
Example 2
Example 2 du � 1 + u 2 =
Example 2 du � 1 + u 2 = arctan u + C
Example 2 du � 1 + u 2 = arctan u + C Substituting back:
Example 2 du � 1 + u 2 = arctan u + C Substituting back: u = e x
Example 2 du � 1 + u 2 = arctan u + C Substituting back: u = e x � e x 1 + e 2 x dx =
Example 2 du � 1 + u 2 = arctan u + C Substituting back: u = e x � e x 1 + e 2 x dx = arctan e x + C
Example 2 du � 1 + u 2 = arctan u + C Substituting back: u = e x � e x 1 + e 2 x dx = arctan e x + C
Recommend
More recommend