local regularity multifractal analysis and boundary
play

Local regularity, multifractal analysis and boundary behavior of - PowerPoint PPT Presentation

Local regularity, multifractal analysis and boundary behavior of harmonic functions Eugenia Malinnikova NTNU, NORWAY; visiting Purdue University, IN Bloomington, October 10, 2015 E. Malinnikova (NTNU) Boundary behavior of harmonic functions


  1. Local regularity, multifractal analysis and boundary behavior of harmonic functions Eugenia Malinnikova NTNU, NORWAY; visiting Purdue University, IN Bloomington, October 10, 2015 E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 1 / 239

  2. Outline Local regularity E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 2 / 239

  3. Outline Local regularity Multifractal analysis and harmonic extension E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 2 / 239

  4. Outline Local regularity Multifractal analysis and harmonic extension Positive harmonic functions E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 2 / 239

  5. Outline Local regularity Multifractal analysis and harmonic extension Positive harmonic functions Hausdorff measures of sets of extremal growth E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 2 / 239

  6. Outline Local regularity Multifractal analysis and harmonic extension Positive harmonic functions Hausdorff measures of sets of extremal growth Oscillation integral and the law of the iterated logarithm E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 2 / 239

  7. Local regularity Let f : R → R and α > 0, we say that f ∈ C α ( x 0 ) if there exists a polynomial P of degree less than α such that | f ( x ) − P ( x − x 0 ) | ≤ C | x − x 0 | α , | x − x 0 | < 1 . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 3 / 239

  8. Local regularity Let f : R → R and α > 0, we say that f ∈ C α ( x 0 ) if there exists a polynomial P of degree less than α such that | f ( x ) − P ( x − x 0 ) | ≤ C | x − x 0 | α , | x − x 0 | < 1 . The local Hölder exponent is h f ( x 0 ) = sup { α : f ∈ C α ( x 0 ) } . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 3 / 239

  9. Local regularity Let f : R → R and α > 0, we say that f ∈ C α ( x 0 ) if there exists a polynomial P of degree less than α such that | f ( x ) − P ( x − x 0 ) | ≤ C | x − x 0 | α , | x − x 0 | < 1 . The local Hölder exponent is h f ( x 0 ) = sup { α : f ∈ C α ( x 0 ) } . EXAMPLE: R ( x ) = � ∞ n 2 sin π n 2 x , 1 1 Riemann function, non-differential at x �∈ Q (Hardy, Littlewood) E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 3 / 239

  10. Local regularity Let f : R → R and α > 0, we say that f ∈ C α ( x 0 ) if there exists a polynomial P of degree less than α such that | f ( x ) − P ( x − x 0 ) | ≤ C | x − x 0 | α , | x − x 0 | < 1 . The local Hölder exponent is h f ( x 0 ) = sup { α : f ∈ C α ( x 0 ) } . EXAMPLE: R ( x ) = � ∞ n 2 sin π n 2 x , 1 1 Riemann function, non-differential at x �∈ Q (Hardy, Littlewood) Jaffard (1996) computed h R ( x ) explicitly, 1 / 2 ≤ h R ( x ) ≤ 3 / 2 depends on the rate of rational approximation. E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 3 / 239

  11. Wavelet transform Local regularity can be measured by the decay of the wavelet transform W f ( a , b ) = 1 � f ( t ) ψ ( a − 1 ( t − b )) dt , a R where ψ is a "wavelet-function", ψ is smooth enough and � ψ ( t ) dt = 0 . Roughly speaking, f ∈ C α ( x 0 ) iff | W f ( a , b ) | ≤ Ca α ( 1 + a − 1 | b − x 0 | ) α . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 4 / 239

  12. Spectrum of singularities Let E f ( β ) = { x ∈ R : h f ( x ) = β } d f ( β ) = dim H ( E f ( β )) , d f is called the spectrum of singularities (multifractal spectrum) of f . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 5 / 239

  13. Spectrum of singularities Let E f ( β ) = { x ∈ R : h f ( x ) = β } d f ( β ) = dim H ( E f ( β )) , d f is called the spectrum of singularities (multifractal spectrum) of f . EXAMPLE: d R ( β ) =? E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 5 / 239

  14. Local dimension of a measure Let µ be a positive measure on R m − 1 , we define the (lower) local dimension of µ at x 0 as log µ ( B ( r , x 0 )) h µ ( x 0 ) = lim inf . log r r → 0 + When m = 2 then h µ ( x 0 ) = h F ( x 0 ) , where F is the anti-derivative of µ . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 6 / 239

  15. Local dimension of a measure Let µ be a positive measure on R m − 1 , we define the (lower) local dimension of µ at x 0 as log µ ( B ( r , x 0 )) h µ ( x 0 ) = lim inf . log r r → 0 + When m = 2 then h µ ( x 0 ) = h F ( x 0 ) , where F is the anti-derivative of µ . (almost) E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 6 / 239

  16. Local dimension of a measure Let µ be a positive measure on R m − 1 , we define the (lower) local dimension of µ at x 0 as log µ ( B ( r , x 0 )) h µ ( x 0 ) = lim inf . log r r → 0 + When m = 2 then h µ ( x 0 ) = h F ( x 0 ) , where F is the anti-derivative of µ . (almost) We will instead work with the harmonic extension u = P ∗ µ , we define F γ ( u ) = { y ∈ R m − 1 : lim sup u ( y , t ) t γ > 0 } . t → 0 E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 6 / 239

  17. Local dimension of a measure Let µ be a positive measure on R m − 1 , we define the (lower) local dimension of µ at x 0 as log µ ( B ( r , x 0 )) h µ ( x 0 ) = lim inf . log r r → 0 + When m = 2 then h µ ( x 0 ) = h F ( x 0 ) , where F is the anti-derivative of µ . (almost) We will instead work with the harmonic extension u = P ∗ µ , we define F γ ( u ) = { y ∈ R m − 1 : lim sup u ( y , t ) t γ > 0 } . t → 0 Exercise The following estimate holds dim H F γ ( u ) ≤ m − 1 − γ, and it is sharp. E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 6 / 239

  18. Generalized local dimension Let v be increasing on [ 0 , 1 ) , λ ( t ) = t m − 1 v ( t ) be increasing and lim t → 0 t m − 1 v ( t ) = 0. E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 7 / 239

  19. Generalized local dimension Let v be increasing on [ 0 , 1 ) , λ ( t ) = t m − 1 v ( t ) be increasing and lim t → 0 t m − 1 v ( t ) = 0. Theorem (K.S. Eikrem, M., 2012; F. Bayart, Y. Heurteaux, 2013)) (i) Let u be a positive harmonic function in R m + , we define u ( y , t ) F v ( u ) = { y ∈ R m − 1 : lim sup > 0 } . v ( t ) t → 0 + Then F v ( u ) is a countable union of sets of finite H λ -measure. E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 7 / 239

  20. Generalized local dimension Let v be increasing on [ 0 , 1 ) , λ ( t ) = t m − 1 v ( t ) be increasing and lim t → 0 t m − 1 v ( t ) = 0. Theorem (K.S. Eikrem, M., 2012; F. Bayart, Y. Heurteaux, 2013)) (i) Let u be a positive harmonic function in R m + , we define u ( y , t ) F v ( u ) = { y ∈ R m − 1 : lim sup > 0 } . v ( t ) t → 0 + Then F v ( u ) is a countable union of sets of finite H λ -measure. (ii) There exists a positive function u such that u ( y , t ) ≤ v ( t ) and H λ ( E v ( u )) > 0 , where u ( y , t ) E v ( u ) = { y ∈ S : lim inf > 0 } . v ( t ) t → 0 + E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 7 / 239

  21. Generalized local dimension Let v be increasing on [ 0 , 1 ) , λ ( t ) = t m − 1 v ( t ) be increasing and lim t → 0 t m − 1 v ( t ) = 0. Theorem (K.S. Eikrem, M., 2012; F. Bayart, Y. Heurteaux, 2013)) (i) Let u be a positive harmonic function in R m + , we define u ( y , t ) F v ( u ) = { y ∈ R m − 1 : lim sup > 0 } . v ( t ) t → 0 + Then F v ( u ) is a countable union of sets of finite H λ -measure. (ii) There exists a positive function u such that u ( y , t ) ≤ v ( t ) and H λ ( E v ( u )) > 0 , where u ( y , t ) E v ( u ) = { y ∈ S : lim inf > 0 } . v ( t ) t → 0 + For a typical (Baire category) positive measure the set of given growth has exactly this "Hausdorff dimension" . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 7 / 239

  22. Classes of harmonic functions of controlled growth Let v ( t ) , t > 0 , be a positive increasing continuous function and assume that lim t → 0 + v ( t ) = + ∞ . We define k v = { u : R m + → R , ∆ u = 0 , u ( y , t ) ≤ Kv ( t ) } , and h v = { u : R m + → R , ∆ u = 0 , | u ( y , t ) | ≤ Kv ( | t | ) } . E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 8 / 239

  23. Classes of harmonic functions of controlled growth Let v ( t ) , t > 0 , be a positive increasing continuous function and assume that lim t → 0 + v ( t ) = + ∞ . We define k v = { u : R m + → R , ∆ u = 0 , u ( y , t ) ≤ Kv ( t ) } , and h v = { u : R m + → R , ∆ u = 0 , | u ( y , t ) | ≤ Kv ( | t | ) } . Similar spaces can be considered in the unit disc (ball). For any v there exists u ∈ h v such that u ( ry ) → ∞ for a.e. y ∈ S (N. Lusin, I. Privalov; J.-P. Kahane, Y. Katsnelson). This behavior is very different of the one we have seen for positive harmonic functions. E. Malinnikova (NTNU) Boundary behavior of harmonic functions MWAA2015 8 / 239

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend