multi length scale matrix computations and applications
play

Multi-Length Scale Matrix Computations and Applications in Quantum - PowerPoint PPT Presentation

Multi-Length Scale Matrix Computations and Applications in Quantum Mechanical Simulations Zhaojun Bai http://www.cs.ucdavis.edu/ bai joint work with Wenbin Chen, Roger Lee, Richard Scalettar, Ichitaro Yamazaki Workshop on Future Directions


  1. Multi-Length Scale Matrix Computations and Applications in Quantum Mechanical Simulations Zhaojun Bai http://www.cs.ucdavis.edu/ ∼ bai joint work with Wenbin Chen, Roger Lee, Richard Scalettar, Ichitaro Yamazaki Workshop on Future Directions in Tensor-Based Computation and Modeling NSF, Arlington, Feb. 20-21, 2009

  2. Computational Material Science Simulation and understanding properties of solid-state materials: magnetism, metal-insulator transition, high temperature superconductivity, ... Conductance map of an electronic crystal state ... at the atomic scale. [T. Hanaguri et al , Nature 430, 1001 (2004)]

  3. Outline of this talk 1. Hubbard model and quantum Monte Carlo simulation 2. QUEST: QUantum Electron Simulation Toolbox 3. Multi-length scale matrix computations – “tensor-based?” • Multi-length scale matrix analysis • Communication-avoiding stable matrix inversion • Self-adapting direct linear solvers • Robust preconditioned iterative solvers 4. Concluding remarks Supported by NSF and DOE SciDAC

  4. Many body simulation on multi-layer lattice Hubbard model and quantum Monte Carlo simulation

  5. Hubbard Hamiltonian – 4 N H = H K + H µ + H V � � � ( n i ↑ − 1 2)( n i ↓ − 1 ( c † iσ c jσ + c † = − t jσ c iσ ) + µ ( n i ↑ + n i ↓ ) + U 2) i i � i,j � ,σ • � i, j � : a pair of nearest-neighbor spatial sites • σ = ↑ , ↓ : spin direction of electrons • c † iσ ( c iσ ) creates (destroys) an electron of spin σ on site i • t : hopping parameter ⇐ kinetic energy • U : local repulsion between electrons ⇐ potential energy • µ : controls the electron density ⇐ chemical potential energy Related quantum many body models: • Ising model for phase transition • Anderson model of localization for electron transport Hubbard model and quantum Monte Carlo simulation

  6. Physical observable E The expected value of a physical observable E , such as density-density correlation, spin-spin correlation, the magnetic susceptibility , is given by �E� = Tr ( EP ) , where P is the probability (Boltzmann) distribution P = 1 Z e − β H and β ∝ 1 1 T = Temperature Z = Tr ( e − β H ) = the partition function Hubbard model and quantum Monte Carlo simulation

  7. Computational approximations of Boltzmann distribution P ⎧ 1 ⎪ P ( h ) = Z h det [ M + ( h )] det [ M − ( h )] ⎨ P = 1 “path integral” Z e − β H − → ⎪ ⎩ 1 Z H e − H ( x,p, Φ σ ) P ( x, p, Φ σ ) = [Feynman’65, ....] • Determinant QMC h ∼ P ( h ) • Hybird QMC (=molecular dynamics + mc) ( x ; p, Φ σ ) ∼ P ( x ; p, Φ σ ) [Blankenbecler/Scalapino/Sugar’81, Hirsch’85, ....] [Scalettar/Scalapino/Sugar/Toussaint’87, ....] Hubbard model and quantum Monte Carlo simulation

  8. QUEST: QUantum Electron Simulation Toolbox • Fortran 90 package for determinant (and hybrid) Monte Carlo simulations • Integration and revision of several “legacy” codes developed in the past two decades • Modulized structures and configurations variations of Hamiltonian different lattice geometry and multi-layer many physical measurements • Stable and efficient multi-length scale matrix computation kernels • Partially parallelized (MPI, OpenMP) QUEST

  9. QUEST ⇒ “Right” Physics and “Record-breaking” lattice sizes 0.1 0.1 0.05 0.05 0 0 c(lx,ly) c(lx,ly) -0.05 -0.05 (10,10) -0.1 (L/2, L/2) 24 x 24 -0.1 20 x 20 -0.15 16 x 16 β = 32 12 x 12 β = 20 (0,0) (10,0) 8 x 8 β = 12 (0,0) (L/2,0) -0.15 -0.2 (0,0) (10,0) (10,10) (0,0) (0,0) (L/2,0) (L/2, L/2) (0,0) magnetism forms as T is lowered large lattice sizes lead to converge

  10. Matrix kernel • Multi-length scale matrices DQMC : M σ ( h ) = I + BD L BD L − 1 · · · BD 1 HQMC : M σ ( x ) = I NL − ( I N ⊗ B ) D [ L ] ( P ⊗ I N ) • B = e t ∆ τK D ℓ = e σV ℓ ( x ℓ ) • D [ L ] = diag ( D 1 , D 2 , . . . , D L ) V ℓ ( x ℓ ) = diag ( x 1 , x 2 , . . . , x L ) • K is defined based on lattice structure: K = K x ⊕ K y for 2-D rectangle Multi-length scale matrices

  11. Multi-length scaling • Length-scales: N , L – N : spatial lattice size, – L : the number of imaginary-time slices, • Energy scales: t , U , β – t : hopping of electrons between atoms and layers (kinetic energy), – U : strength of the interactions between the electrons (potential energy), – β : inverse temperature, • Length and energy scale connection: ∆ τ = β L In more complex situations other energy scales also enter, such as the frequency of ionic vibrations (phonons) and the strength of the coupling of electrons to those vibrations Multi-length scale matrices

  12. QMC simulation kernels Matrix computation problems det [ M σ ( h ′ )] ( M T σ ( x ) M σ ( x )) − 1 Φ σ , G σ ( h ) = M − 1 det [ M σ ( h )] , σ ( h ) . . . A typical MD trajectory: 1. High order, say 4.5 4 N x × N y × L = 64 × 64 × 160 MD step: 3.5 = 655 , 360 0.01 3 ’ h 11 2. Wide range of eigenvalue dis- ’ : 2.5 11 → h h X 11 tributions λ ( M ) and condition 2 −1 400*M numbers κ ( M ) 1.5 h 1 3. Metropolis Monte-Carlo, 11 O (10 4 ) solutions required 0.5 0 −1.5 −1 −0.5 0 0.5 1 1.5 P Multi-length scale matrix computations

  13. Hubbard matrix eigenvalue distribution λ ( M ) L e i (2 ℓ +1) π 1 λ ( M ) = 1 − λ ( B L · · · B 2 B 1 ) , 0 ≤ ℓ ≤ L − 1 L [Frobenius ’12, Romanovsky ’43, Varga ’62] 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 −1 −0.5 0 0.5 1 1.5 2 2.5 3 Multi-length scale matrix analysis

  14. Hubbard matrix eigenvalue distribution λ ( M ) L e i (2 ℓ +1) π 1 λ ( M ) = 1 − λ ( B L · · · B 2 B 1 ) , 0 ≤ ℓ ≤ L − 1 L [Frobenius ’12, Romanovsky ’43, Varga ’62] 2 N=16 N=256 1.5 1 0.5 0 −0.5 −1 −1.5 −2 −1 −0.5 0 0.5 1 1.5 2 2.5 3 Multi-length scale matrix analysis

  15. Hubbard matrix eigenvalue distribution λ ( M ) L e i (2 ℓ +1) π 1 λ ( M ) = 1 − λ ( B L · · · B 2 B 1 ) , 0 ≤ ℓ ≤ L − 1 L [Frobenius ’12, Romanovsky ’43, Varga ’62] 2 p=8 p=64 1.5 1 0.5 0 −0.5 −1 −1.5 −2 −1 −0.5 0 0.5 1 1.5 2 2.5 3 Multi-length scale matrix analysis

  16. Hubbard matrix eigenvalue distribution λ ( M ) L e i (2 ℓ +1) π 1 λ ( M ) = 1 − λ ( B L · · · B 2 B 1 ) , 0 ≤ ℓ ≤ L − 1 L [Frobenius ’12, Romanovsky ’43, Varga ’62] 2.5 U=0 U=6 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 −2.5 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 Multi-length scale matrix analysis

  17. Hubbard matrix eigenvalue distribution λ ( M ) L e i (2 ℓ +1) π 1 λ ( M ) = 1 − λ ( B L · · · B 2 B 1 ) , 0 ≤ ℓ ≤ L − 1 L [Frobenius ’12, Romanovsky ’43, Varga ’62] 2 p=8,t=1 p=64,t=8 1.5 1 0.5 0 −0.5 −1 −1.5 −2 −1 −0.5 0 0.5 1 1.5 2 2.5 3 Multi-length scale matrix analysis

  18. Communication-avoiding stable matrix inversion • Green’s function G = M − 1 = ( I + B L B L − 1 · · · B 1 ) − 1 • Singular values of B L B L − 1 · · · B 1 could spread out from 10 30 to 10 − 30 • A number of methods have been studied to calculate the matrix product in our community, Heath/Laub/Paige/Ward, Bojanczyk/Nagy/Plemmnons, van Dooren, Kagstrom, ... • Graded (stratified) decomposition ⎡ ⎤ x ⎢ ⎥ x ⎢ ⎥ B L B L − 1 · · · B 1 = UDT = U ⎦ T ⎣ x x using QR with pivoting, and proper ordering of multiplications [Loh et al ’92], or Jacobi rotations [Stewart’94]. • G = M − 1 = ( I + UDT ) − 1 = T − 1 ( U T T − 1 + D ) − 1 U T Communication-avoiding stable matrix inversion

  19. Communication-avoiding stable matrix inversion • QR with pivoting is not friendly to multicore computing BLAS/LAPACK in MKL on Intel Quad 2.4GHz Gflops dgemm dgeqrf dgeqp3 1-core 7.79 6.47 1.47 2-core 15.68 13.10 2.47 2-way Quad 26.39 21.68 3.22 • We developed an alternative based on a block structure orthogonal factorization (BSOF) without pivoting UDT BSOF 1-core 4.02 7.68 2-core 5.06 13.28 2-way Quad 6.22 18.85 Communication-avoiding stable matrix inversion

  20. Sel-adapting direct linear solvers • Block cyclic reduction ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ I B 1 x 1 b 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − B 2 I x 2 b 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − B 3 I x 3 = b 2 , ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ − B 4 I x 4 b 3 − B 5 I x 5 b 4 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ b 1 I B 1 x 1 ⎢ ⎥ b (2) ⎦ = ⎣ ⎦ ⎣ ⇒ − B 3 B 2 I x 3 ⎦ , ⎣ 3 b (2) − B 5 B 4 I x 5 5 • Factor of 2 k –reduction, however, limited k due to numerical instability [Buzbee/Golub/Nielson’70, ... ] Self-adapting direct linear solvers

  21. Sel-adapting direct linear solvers • Block structured orthogonal factorization (BSOF) M = ( Q 1 Q 2 · · · Q L ) R, i.e. ⎡ ⎤ ⎡ ⎤ R 1 X X I B 1 ⎢ ⎥ R 2 X X ⎢ ⎥ ⎢ ⎥ − B 2 I Q k ... ... ⎢ ⎥ ⎢ ⎥ = ⇒ X . ... ... ⎣ ⎦ ⎢ ⎥ ⎣ ⎦ R L − 1 X − B L I R L • Rich substructure of Q 1 Q 2 · · · Q L exploited for the Green’s function calculations • Parallelizable [Wright’92,...] • Stable method, but, high memory cost O ( N 2 L ) . Self-adapting direct linear solvers

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend