mouvement brownien branchant avec s election
play

Mouvement brownien branchant avec s election Soutenance de th` ese - PowerPoint PPT Presentation

Mouvement brownien branchant avec s election Soutenance de th` ese de Pascal M AILLARD effectu ee sous la direction de Zhan S HI Jury Brigitte C HAUVIN , Francis C OMETS , Bernard D ERRIDA , Yueyun H U , Andreas K YPRIANOU , Zhan S HI


  1. Mouvement brownien branchant avec s´ election Soutenance de th` ese de Pascal M AILLARD effectu´ ee sous la direction de Zhan S HI Jury Brigitte C HAUVIN , Francis C OMETS , Bernard D ERRIDA , Yueyun H U , Andreas K YPRIANOU , Zhan S HI Rapporteurs Andreas K YPRIANOU , Ofer Z EITOUNI Universit´ e Pierre et Marie Curie 11 octobre 2012

  2. Thesis structure Introduction + 3 chapters: The number of absorbed individuals in branching Brownian motion 1 with a barrier Branching Brownian motion with selection of the N right-most 2 particles A note on stable point processes occurring in branching Brownian 3 motion Pascal M AILLARD Mouvement brownien branchant avec s´ election 2 / 33

  3. Thesis structure Introduction + 3 chapters: The number of absorbed individuals in branching Brownian motion 1 with a barrier Branching Brownian motion with selection of the N right-most 2 particles A note on stable point processes occurring in branching Brownian 3 motion In this presentation: Chapters 1 and 2. Pascal M AILLARD Mouvement brownien branchant avec s´ election 2 / 33

  4. Introduction Outline 1 Introduction 2 Branching Brownian motion with absorption 3 BBM with constant population size 4 Perspectives Pascal M AILLARD Mouvement brownien branchant avec s´ election 3 / 33

  5. Introduction Branching Brownian motion (BBM) position x Definition A particle performs standard Brownian motion started at a time point x ∈ R . Pascal M AILLARD Mouvement brownien branchant avec s´ election 4 / 33

  6. Introduction Branching Brownian motion (BBM) x position Definition A particle performs standard Brownian motion started at a time ~exp( β ) point x ∈ R . With rate β , it branches, i.e. it dies and spawns L offspring ( L being a random variable). Pascal M AILLARD Mouvement brownien branchant avec s´ election 4 / 33

  7. Introduction Branching Brownian motion (BBM) x position Definition A particle performs standard Brownian motion started at a time ~exp( β ) point x ∈ R . With rate β , it branches, i.e. it dies and spawns L offspring ( L being a random variable). Each offspring repeats this process independently of the others. . . . Pascal M AILLARD Mouvement brownien branchant avec s´ election 4 / 33

  8. Introduction Branching Brownian motion (BBM) x position Definition A particle performs standard Brownian motion started at a time ~exp( β ) point x ∈ R . With rate β , it branches, i.e. it dies and spawns L offspring ( L being a random variable). Each offspring repeats this process independently of the others. − → A Brownian motion indexed by a tree . . . . Pascal M AILLARD Mouvement brownien branchant avec s´ election 4 / 33

  9. Introduction Branching Brownian motion (BBM) (2) x position Context An example of a multitype branching process (type time ~exp( β ) space: R ) . . . Pascal M AILLARD Mouvement brownien branchant avec s´ election 5 / 33

  10. Introduction Branching Brownian motion (BBM) (2) x position Context An example of a multitype branching process (type time ~exp( β ) space: R ) Discrete counterpart: branching random walk . . . Pascal M AILLARD Mouvement brownien branchant avec s´ election 5 / 33

  11. Introduction Branching Brownian motion (BBM) (2) x position Context An example of a multitype branching process (type time ~exp( β ) space: R ) Discrete counterpart: branching random walk Interpretations: Model for an asexual population undergoing mutation (position = fitness) Spin glass (with infinitely deep hierarchy) Directed polymer on a tree Prototype of a travelling . . . wave Pascal M AILLARD Mouvement brownien branchant avec s´ election 5 / 33

  12. Introduction Branching Brownian motion (BBM) (3) We always suppose m := E [ L ] − 1 > 0. Right-most particle Let R t be the position of the right-most particle. Then, as t → ∞ , almost surely on the event of survival, R t � 2 β m . → t Picture by ´ Eric Brunet Pascal M AILLARD Mouvement brownien branchant avec s´ election 6 / 33

  13. Introduction Branching Brownian motion (BBM) (3) We always suppose m := E [ L ] − 1 > 0. Right-most particle Let R t be the position of the right-most particle. Then, as t → ∞ , almost surely on the event of survival, R t � 2 β m . → t Convention Picture by ´ Eric Brunet We will henceforth set β = 1 / ( 2 m ) . Pascal M AILLARD Mouvement brownien branchant avec s´ election 6 / 33

  14. Introduction BBM ← → FKPP Let g : R → [ 0 , 1 ] be measurable. Define � � � u ( t , x ) = E x g ( X u ( t )) . u ∈N t Then u satisfies the following partial differential equation: Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation � ∂ t u = 1 2 ∂ 2 x u + β ( E [ u L ] − u ) u ( 0 , x ) = g ( x ) (initial condition) The prototype of a parabolic PDE admitting travelling wave solutions. Pascal M AILLARD Mouvement brownien branchant avec s´ election 7 / 33

  15. Introduction Selection 0 -x position Two models of BBM with selection : time y = - x + ct . . . Pascal M AILLARD Mouvement brownien branchant avec s´ election 8 / 33

  16. Introduction Selection 0 -x position Two models of BBM with selection : BBM with absorption : Let f ( t ) be 1 time a continuous function (the y = - x + ct barrier ). Kill an individual as soon as its position is less than f ( t ) ( one-sided FKPP ). . . . Pascal M AILLARD Mouvement brownien branchant avec s´ election 8 / 33

  17. Introduction Selection 0 -x position Two models of BBM with selection : BBM with absorption : Let f ( t ) be 1 time a continuous function (the y = - x + ct barrier ). Kill an individual as soon as its position is less than f ( t ) ( one-sided FKPP ). BBM with constant population 2 size ( N -BBM) : Fix N ∈ N . As . . . soon as the number of individuals exceeds N , kill the left-most individuals until the population size equals N ( noisy FKPP ). Pascal M AILLARD Mouvement brownien branchant avec s´ election 8 / 33

  18. Branching Brownian motion with absorption Outline Introduction 1 2 Branching Brownian motion with absorption Results Proof idea 3 BBM with constant population size 4 Perspectives Pascal M AILLARD Mouvement brownien branchant avec s´ election 9 / 33

  19. Branching Brownian motion with absorption Results Branching Brownian motion with absorption 0 -x position We take f ( t ) = − x + ct ( linear barrier ). Vast literature, known results (sample): time y = - x + ct almost sure extinction ⇔ c ≥ 1 ( c = 1: critical case c > 1: supercritical case) growth rates for c < 1. asymptotics for extinction . . . probability for c = 1 − ε , ε small We are interested in the number of absorbed individuals in the case c ≥ 1 (question raised by D. Aldous). Pascal M AILLARD Mouvement brownien branchant avec s´ election 10 / 33

  20. Branching Brownian motion with absorption Results Our results (critical case) Let Z x denote the number of individuals absorbed at the line − x + ct . Theorem Assume that c = 1 and that E [ L ( log L ) 2 ] < ∞ . For each x > 0 , xe x P ( Z x > n ) ∼ n ( log n ) 2 , as n → ∞ . If, furthermore, E [ s L ] < ∞ for some s > 1 , then xe x P ( Z x = δ n + 1 ) ∼ as n → ∞ , δ n 2 ( log n ) 2 where δ is the span of L − 1 . Pascal M AILLARD Mouvement brownien branchant avec s´ election 11 / 33

  21. Branching Brownian motion with absorption Results Our results (supercritical case) Theorem Assume that c > 1 and that E [ s L ] < ∞ for some s > 1 . Let λ c < λ c be the roots of the equation λ 2 − 2 c λ + 1 = 0 and define d = λ c /λ c . There ∃ K = K ( c , L ) > 0 , such that for all x > 0 , P ( Z x = δ n + 1 ) ∼ K ( e λ c x − e λ c x ) as n → ∞ . n d + 1 Pascal M AILLARD Mouvement brownien branchant avec s´ election 12 / 33

  22. Branching Brownian motion with absorption Results Other studies Addario-Berry and Broutin (2011), A¨ ıd´ ekon (2010): Less precise tail estimates ( c = 1). A¨ ıd´ ekon, Hu and Zindy (2012+): Similar results for branching random walk ( c ≥ 1), with more explicit K . Pascal M AILLARD Mouvement brownien branchant avec s´ election 13 / 33

  23. Branching Brownian motion with absorption Results Other studies Addario-Berry and Broutin (2011), A¨ ıd´ ekon (2010): Less precise tail estimates ( c = 1). A¨ ıd´ ekon, Hu and Zindy (2012+): Similar results for branching random walk ( c ≥ 1), with more explicit K . In contrast to the above papers, our proofs are entirely analytic. Strategy: derive asymptotics on the generating function of Z x near its singularity 1 (following an idea of R. Pemantle’s). Pascal M AILLARD Mouvement brownien branchant avec s´ election 13 / 33

  24. Branching Brownian motion with absorption Proof idea The number of absorbed individuals 0 position -y -x Theorem (Neveu, 1988) ( Z x ) x ≥ 0 is a continuous-time Galton–Watson process. The time infinitesimal generating function a ( s ) = d E [ s Z x ] / d x admits the decomposition a = − ψ ′ ◦ ψ − 1 , . . . . . . where ψ is an FKPP travelling wave of speed c, i.e. . . . 2 ψ ′′ ( s ) − c ψ ′ ( s ) + β ( E [ s L ] − s ) = 0 , 1 . . . and ψ ( x ) ↑ 1 , as x → ∞ . Pascal M AILLARD Mouvement brownien branchant avec s´ election 14 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend