motivation power and energy
play

Motivation Power and energy: Will not motivate low power topic - PDF document

Motivation Power and energy: Will not motivate low power topic You are here, arent you!? how low can we go? Lars Svensson Scaling and limits set the context for larssv@chalmers.se insights and for good competitive design


  1. Motivation Power and energy: • Will not motivate low power topic … • You are here, aren’t you!? how low can we go? Lars Svensson • Scaling and limits set the context for larssv@chalmers.se insights and for good competitive design • … and there is an intellectual challenge too, of course :-) 1 2 Overview / Outline • Will start from a CMOS perspective • Gradually, circuits and examples will become less and less like the ordinary CMOS energetics gates • Practical design methods in later lectures (Per Larsson-Edefors) • End at fundamental physical limit 3 4 CMOS inverter CMOS inverter • Half of injected energy V dd V dd • Input goes low, output is dissipated during charge, charged Q other half during discharge Q • Q = C L V dd • E cycle = E inj C L C L • E inj = V dd · Q = C L V dd2 • Repeat with frequency f: • E diss = V avg · Q = C L V dd2 / 2 • P = f C L V dd2 = ß f ck C L V dd2 • E CL = E inj – E diss = C L V dd2 / 2 • Several capacitive nodes: • Dissipated during discharge • P = f ck V dd2 ! (ß i C Li ) 5 6

  2. How reduce E and P? V dd reduction • Gate-source voltage V GS of device is • Reduce f, C, and/or V reduced too • V looks especially promising since squared V dd • Drain current reduced • Reduce swing wrt V dd Q • I d ~ (V dd – V T ) x , 1 < x " 2 • One-time gain, but OK • Time to charge C L : C L • Used in memories, I/O • t ~ Q / I d ~ # V dd C L / (V dd – V T ) x • Logic typically full-swing • Goes toward +inf as V dd approaches • Reduce V dd threshold voltage V T 7 8 Further V dd reduction Leakage currents • To avoid speed reduction, V T must be reduced too • Keep V dd / (V dd – V T ) x approx. constant • Reduce V T as fast as V dd • Devices will conduct even below V T • How far? • Causes leakage power when idle • Exponential increase with lower V T will eventually defeat any switching power gain 9 10 Optimal voltages Optimal choice? • Sakurai surfaces of power and delay • Minimum moves with activity factor ß • Same delay at A and B, but lower • Weighted sum of active and idle powers power at B 11 12

  3. Metrics Energy-delay curves Delay vs energy when Vdd/Vt is varied 10 • Sakurai minimum steers towards low 9 8 performance! 7 6 Delay • Does not care about time 5 4 3 • Other metrics of frugality? 2 1 • Power = Energy per time 0 0 2 4 6 8 10 12 14 16 Energy • Energy • General way of relating energy and delay for a design • EDP = Energy * time • Useful to invert one axis 13 14 Fast processing with Energy-delay curves slow circuits? Delay vs energy when Vdd/Vt is varied Inverse delay vs energy when Vdd/Vt is varied 10 1.4 • Energy per operation falls faster than 9 1.2 performance with reduced V dd 8 1 7 Inverse delay 6 0.8 • Opportunity! Delay 5 0.6 4 3 • Reduce V dd until performance is halved, 0.4 2 0.2 then duplicate hardware 1 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Energy Energy • Examples: pipelining, parallel processing, • General way of relating energy and delay multicore for a design • Overheads • Useful to invert one axis 14 15 !"#$%&'#$()*+&,-+#)*./01$2+#3 !"#$%&'#$()*+&,-+#)*./01$2+#3 :'(;*.*4,'* :'(;*.*4,'* <='%7.= <='%7.= 08 08 #6 #6 01>3%&/45(6%7(4( 01>3%&/45(6%7(4( !6 %6 %6 !6 %&$' &!%' &!%' 08 1 "#$%&''()*%%%%%%%"#$%+,-./%0123%&/45(6%7(4( "#$%&''()*%%%%%%%"#$%+,-./%0123%&/45(6%7(4( %&$' !%)' !%)' 405/*12 , 405/*12 , 0123%<',A=/4.,; 08 B 0123%<',A=/4.,; $#' $#' 3 # -./0*12 3 -./0*12 � " "=@,') =@,') !$' !$' � Moore / Dennard 3 !!! 08 2 #' #' -./0*12 3 -./0*12 !!! � "./',C',/=**,' � "./',C',/=**,' 3 44 -./0*12 3 -./0*12 44 !' !' 08 > -./0*12 3 -./0*12 3 %&$" %&$" *#)$, *#)$, $#" $#" scaling 08 3 *+)$, )(%)$ *+)$, )(%)$ #" #" !$" !$" 08 D )()$ )()$ !" !" )()( )()( 08 9 #((# #((# 08 E 08 0 08 8 01>8 01>8 01>3 01>3 0128 0128 0123 0123 01B8 01B8 01B3 01B3 0118 0118 0113 0113 E888 E888 E883 E883 E808 E808 $,5'/=?%!;4=6% $,5'/=?%!;4=6% 16 17

  4. !"#$%&'#$()*+&,-+#)*./01$2+#3 !"#$%&'#$()*+&,-+#)*./01$2+#3 !"#$%&&#"'!#(%"')*+,,&-'. !"#$%&&#"'!#(%"')*+,,&-' . /$,01%'2'3%+4+5%' /$,01%'2'3%+4+5%' :'(;*.*4,'* :'(;*.*4,'* <='%7.= <='%7.= 08 08 #6 #6 !6 %6 %6 01>3%&/45(6%7(4( 01>3%&/45(6%7(4( !6 %&$' &!%' &!%' #!!! 08 1 "#$%&''()*%%%%%%%"#$%+,-./%0123%&/45(6%7(4( "#$%&''()*%%%%%%%"#$%+,-./%0123%&/45(6%7(4( %&$' !%)' !%)' 405/*12 , 405/*12 , 0123%<',A=/4.,; 0123%<',A=/4.,; 08 B $#' $#' 3 # -./0*12 3 -./0*12 #!! � " � "=@,') =@,') !$' !$' 3 !!! -./0*12 3 08 2 #' #' -./0*12 !!! 23456, 23456, � "./',C',/=**,' � "./',C',/=**,' 3 44 -./0*12 -./0*12 3 44 !' !' )*+,-./01 #! 08 > -./0*12 3 -./0*12 3 %&$" %&$" *#)$, *#)$, $#" $#" 08 3 10 5 )(%)$ *+)$, *+)$, # )(%)$ #" #" !$" !$" 08 D )()$ )()$ 7,898:, 7,898:, !" !" )()( !"# )()( 08 9 #((# #((# 08 E !"!# 08 0 !"!!# 08 8 #$%! #$&! #$'! #$$! (!!! (!#! 01>8 01>8 01>3 01>3 0128 0128 0123 0123 01B8 01B8 01B3 01B3 0118 0118 0113 0113 E888 E888 E883 E883 E808 E808 $,5'/=?%!;4=6% $,5'/=?%!;4=6% 17 18 !"#$%&&#"'!#(%"')*+,,&-' !"#$%&&#"'!#(%"')*+,,&-'. . /$,01%'2'3%+4+5%' /$,01%'2'3%+4+5%' !"#$%&&#"'!#(%"')*+,,&-'. !"#$%&&#"'!#(%"')*+,,&-' . /$,01%'2'3%+4+5%' /$,01%'2'3%+4+5%' #!!! #!!! #!! #!! 23456, 23456, 23456, 23456, )*+,-./01 )*+,-./01 #! #! 10 3 10 3 # # 7,898:, 7,898:, 7,898:, 7,898:, !"# !"# !"!# !"!# !"!!# !"!!# #$%! #$&! #$'! #$$! (!!! (!#! #$%! #$&! #$'! #$$! (!!! (!#! … while clocks have gone from kHz to GHz! 18 18 What happened? Dennard scaling • Reduced average activity factors • Large memories • Reduced capacitances • Scaling • 1974 classical paper on scaling ion- implanted MOS devices 19 20

  5. Scaling limit? Scaling limit? 22 nm • Carver Mead’s 1994 predictions • Carver Mead’s 1994 predictions 21 21 Limits Limits 22 22 Limits Oxide thickness • Single atom layers! • Scaling cannot go much further… 22 23

  6. Charging C L • Charging + discharging C L to V dd costs C L V dd2 , always. Right? • No. Energetics revisited C L Q • Replace V dd with ramp! • 0 V dd • Same charge transferred • … but V avg may be < V dd / 2 24 25 Charging C L E diss < C L V dd2 / 2 • Charging + discharging C L to V dd costs C L V dd2 , always. • But how big is it? C L Right? Q • Model switch device as resistor R • No. • Then, if ramp duration is T C L Q • Replace V dd with ramp! • I = Q / T = C L V dd / T • 0 V dd • P = I 2 R = (RC L / T) C L V dd2 / T E diss < C L V dd2 / 2 • Same charge transferred • E diss = P · T = (RC L / T) C L V dd2 • … but V avg may be < V dd / 2 25 26 E diss < C L V dd2 / 2 E diss < C L V dd2 / 2 • But how big is it? • But how big is it? C L C L Q Q • Model switch device as resistor R • Model switch device as resistor R • Then, if ramp duration is T • Then, if ramp duration is T 2 RC L < T • I = Q / T = C L V dd / T • I = Q / T = C L V dd / T • P = I 2 R = (RC L / T) C L V dd2 / T • P = I 2 R = (RC L / T) C L V dd2 / T • E diss = P · T = (RC L / T) C L V dd2 • E diss = P · T = (RC L / T) C L V dd2 26 26

  7. Observations E diss < C L V dd2 / 2 E diss = (RC L / T) C L V dd2 • But how big is it? C L Q • It is good for R to be small • Model switch device as resistor R • R does not matter for power in • Then, if ramp duration is T 2 RC L < T “standard” charging • I = Q / T = C L V dd / T 2 / V dd2 • E diss arbitrarily small for large T • P = I 2 R = (RC L / T) C L V dd2 / T C L < • “Adiabatic charging” • E diss = P · T = (RC L / T) C L V dd2 E diss • No heat delivered to environment 26 27 Observations How size the switch? E diss = (RC L / T) C L V dd2 • Small R is good! • … but requires a wide transistor … • It is good for R to be small • … which means a large gate • R does not matter for power in capacitance … “standard” charging • … which is expensive to charge / • E diss arbitrarily small for large T discharge • “Adiabatic charging” y r • To reap benefits, must charge and e v o c • No heat delivered to environment e discharge gate capacitance adiabatically r t a e h o N 27 28 How size the switch? Yes. The discharge. • Small R is good! • To adiabatically charge and discharge a capacitance, the controlling device must be on • … but requires a wide transistor … throughout • … which means a large gate • … so its gate must be charged before and capacitance … discharged after the load … • … which is expensive to charge / discharge etc… • To reap benefits, must charge and discharge gate capacitance adiabatically C L 28 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend