motion capturing and machine learning for gesture
play

Motion Capturing and Machine Learning for Gesture Recognition - PowerPoint PPT Presentation

Motion Capturing and Machine Learning for Gesture Recognition Sotiris Manitsaris Centre for Robotics | MINES ParisTech | PSL Research University Interactive Systems Gestural interaction Perception Interaction Gesture Knowledge Methodology


  1. Motion Capturing and Machine Learning for Gesture Recognition Sotiris Manitsaris Centre for Robotics | MINES ParisTech | PSL Research University

  2. Interactive Systems Gestural interaction Perception Interaction Gesture Knowledge

  3. Methodology Overview Capturing-Modelling-Recognition modelling capturing & analysis motion description tracking body joints or segments inertial sensors or accelerometers machine learning stochastic modelling HMMs optical or depth gesture camera GMMs DTW recognition & alignment sensorimotor feedback gesture recognition temporal alignment between input and reference distance gesture gesture 2 learning-recognition affordances sound colocalisation

  4. Motion Capture

  5. Motion Capture Computer Vision – Sensors

  6. Motion Capture Wearable or embedded sensors Sensors Inertial sensors • Magnetometers • Gyroscopes • Accelerometers • Electromyographs (EMG) • Gestural descriptors Rotations • Euler angles • Axis/Angle • Quaternions • Exponential map • Rotation matrices • Accelerations •

  7. Motion Capture Wearable or embedded sensors

  8. Motion Capture Wearable or embedded sensors Sensors Retroreflective markers • Light emitting diodes • Overlapping projections • Gestural descriptors Cartesian coordinates •

  9. Motion Capture Markerless computer vision Sensors RGB cameras • Depths cameras • Gestural descriptors Cartesian coordinates •

  10. Feature Extraction & Tracking

  11. Finger Tracking with RGB Cameras (Musical Interaction) Skin model and mathematic morphology Skin modeling Mathematic morphology and contour detection BIP Échantillonnage Obtention d’échantillons de couleur T ⎡ ⎤ P i ( p j ) = R j , G j , B j de peau et d’ongles P i ⎣ ⎦ Détermination de la RI RGB [ m , n ] RI Création d’une image à partir des échantillons P i Normalisation de la RI RI ∈ RI RGB ∀ p j N : RI RGB → RI rg , RI rg [ m , n ] N ([ R j , G j , B j ] T ) = [ r j , g j ] T Modèle de la peau RI ∈ RI rg ∀ p j (r, g) graphique r peau = [ r min , r max ], g peau = [ g min , g max ]

  12. Finger Tracking with RGB Cameras (Musical Interaction) Fingertip Detection

  13. Finger Tracking with RGB Cameras (Musical Interaction) Real-time finger tracking

  14. Body Tracking with Depth Cameras (Human-Robot Collaboration) Geodesic distances Seuillages Construction d’un pour extraire graph 2D connectant le torse et la les pixels du torse position de la tête Le poids de chaque arrête est égal à la différence de profondeur entre les deux pixels Distance géodésique d’un Pour chaque point du point du torse à la tête Algorithme de Dijkstra : torse on calcule le = Trouver le chemin le plus court i.e. chemin « le plus Poids le chemin le plus le chemin ayant le poids le plus faible court » reliant le pixel court reliant ce point à la tête possible à la tête Poids du chemin = Somme des poids des arrêtes parcourues par le chemin Seuillage pour obtenir Positions des mains et les parties les plus chemins les plus éloignées de la tête courts reliant la tête aux mains

  15. Body Tracking with Depth Cameras (Human-Robot Collaboration) Real-time body tracking with geodesic distances

  16. Machine Learning

  17. Machine Learning in Gesture Recognition Introduction Credits: Jules Françoise

  18. Machine Learning in Gesture Recognition Introduction Credits: Jules Françoise

  19. Machine Learning in Gesture Recognition Introduction Credits: Jules Françoise

  20. Feature Extraction & Tracking using Machine Learning Random Decision Forest Example of pre- planned questions of a decision tree How does the depth at that pixel compare to this pixel? Random Decision Forest Use a random selection of questions each time • Learn multiple trees • Add probability distributions as outputs of the trees • to classify Tracking the body parts Training the RDF with synthetic images Depth images Body parts 3D joint proposals

  21. Body Tracking with Depth Cameras (Musical Interaction) Random Decision Forest

  22. Body Tracking with Depth Cameras (Professional Gestures) Hierarchical Random Decision Forests Purpose & Challenges • Classification of complex scene segments based on machine learning • The object is Moving, Revolving, Deformable

  23. Body Tracking with Depth Cameras (Professional Gestures) Hierarchical Random Decision Forests Testing Set Training Set Pre-processing Pre-processing RDF Training RDF Model RDF Model Scene Segmentation

  24. Body Tracking with Depth Cameras (Professional Gestures) Hierarchical Random Decision Forests Maximum probabilities of labels Labels of Parent RDF Tracking of segments

  25. Full Upper-Body Tracking with Depth Cameras (Intangible Musical Instrument) Interactive Space & Surface Purpose & Challenges Natural-User Interfacing the gestural expression and emotion elicitation in music • Learning, performing and composing with gestures as a first-person experience • Augmenting the music score to facilitate the access to musical ICH •

  26. Full Upper-Body Tracking with Depth Cameras (Intangible Musical Instrument) Gestures & Embodiment MICRO BB MACRO BB The Leap motions bounding box (red) The Kinect bounding box (blue) is associated with fingers interaction is associated with upper-body interaction

  27. Full Upper-Body Tracking with Depth Cameras (Intangible Musical Instrument) Explicit Gesture Sonification – Deterministic Modelling

  28. Full Upper-Body Tracking with Depth Cameras (Intangible Musical Instrument) Explicit Gesture Sonification – Deterministic Modelling

  29. Full Upper-Body Tracking with Depth Cameras (Intangible Musical Instrument) Explicit Gesture Sonification – Deterministic Modelling Kite-flying control: triangle plane’ orientation (green) vs. Kinect’ xy plane provides a sense of how much left or right your body is rotating (red arrow). xz vs. triangle plane reacts if the body is going backward or forward and/or the hands are going higher or lower (yellow arrow) Head [ ] n = R ightHand H ead × L eftHand H ead = a , b , c n Left Hand Right Hand [ ] n = R ightHand H ead × L eftHand H ead = a , b , c

  30. The concept of Hidden Markov Models Introduction « The future is independent of the past, given the present » Andreï Andreïevitch Markov Андрей Андреевич Марков 2 June 1856 - 20 July 1921

  31. The concept of Hidden Markov Models Introduction Credits: Lane Votapka

  32. The concept of Hidden Markov Models Reasoning over time and space • We want to reason about a sequence of observations • Gesture recognition in Human-Robot Collaboration • Visual-speech recognition • Gesture control of robots • Need introduce time or space into our models

  33. Markov Chains Model definition Set of N States, {S 1 , S 2 ,… S N } • Sequence of states Q ={q 1 , q 2 ,…} • Initial probabilities π ={ π 1 , π 2 ,… π N } • • π i =P(q 1 =S i ) • Transition matrix A NxN • a ij =P(q t+1 =S j | q t =S i )

  34. Markov Chains Example in weather forecasting Weather model: • 3 states {sunny, rainy, cloudy} Problem: S 1 S 1 S 2 S 2 S 1 • Forecast weather state, based on the current weather state

  35. Markov Chain Example in musical gestures Let’s assume a set of 5 musical states, {S 1 , S 2 , S 3 , S 4 , S 5 } S 1 = fingering_1, S 2 = fingering_2, S 3 = fingering_3, S 4 = fingering_4, S 5 = fingering_5 S 5 S 1 S 2 S 3 S 4

  36. Markov Chain Example in musical gestures

  37. Markov Chain Example in musical gestures 0,2 0,4 0,4 S 2 0,2 0,2 S 3 S 1 0,4 0,4 0,4 0,4 0,4 0,4 0,4 S 5 S 4 0,4 0,2 0,2 Question 1 Given that now the performer is playing an S 2 , what’s the probability that his/her next fingering is an S 3 and the fingering after is an S 4 ? Question 2 Given that now the performer is playing an S 2 , what’s the probability that s/he will be playing an S 4 in three fingerings from now?

  38. Markov Chain Example in musical gestures Question 1 S 2 S 3 S 4 This translates into: You can also think this as moving through the automaton, multiplying the probabilities

  39. Markov Chain Example in musical gestures Question 2 S 2 S 3 S 4 S 2 S 3 S 4 This translates into: we need observations to update our beliefs

  40. Hidden Markov Model Model definition λ =(A, B, π ): Hidden Markov Model A={a ij }: Transition probabilistic distribution • a ij =P(q t+1 =S j | q t =S i ) • Hidden Β ={b i ( x )}: Emission probabilistic distribution • b i ( Ο t )=P( Ο t = x | q t =S i ) • Observed π ={ π i }: Initial state probabilistic distribution • π i =P(q 1 =S i ) •

  41. Hidden Markov Model Conditional independence • Basic conditional independence: • Past and future are independent of the present • Each time step only depends on the previous • This is called the first order Markov property

  42. Hidden Markov Model Model representation – Treilis graph

  43. Hidden Markov Model Model topologies Left to right (A) Left to right (B) Left to right (C) Ergodic S 1 S 3 S 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend