monogamy of entanglement and mean field ansatz for spin
play

Monogamy of entanglement and mean-field ansatz for spin lattices - PowerPoint PPT Presentation

Monogamy of entanglement and mean-field ansatz for spin lattices Ralf Sch utzhold Fakult at f ur Physik Universit at Duisburg-Essen Monogamy of entanglement and mean-field ansatz for spin lattices p.1/11 Spin Lattice Regular


  1. Monogamy of entanglement and mean-field ansatz for spin lattices Ralf Sch¨ utzhold Fakult¨ at f¨ ur Physik Universit¨ at Duisburg-Essen Monogamy of entanglement and mean-field ansatz for spin lattices – p.1/11

  2. Spin Lattice Regular lattice of 1 / 2 -spins (qubits) µ ν σ x σ y σ z Pauli matrices ˆ σ µ = (ˆ µ , ˆ µ , ˆ µ ) Coordination number Z (neighbours) H = 1 ˆ � � σ µ · J · ˆ ˆ B · ˆ σ ν + σ µ Z <µ,ν> µ In general very complicated → mean-field ansatz � | Ψ mf � = | ψ µ � , | Ψ mf � = |↑� |↑� |↑� |↑� . . . e . g ., µ Variational mean-field energy per lattice site � ˆ H � mf = 1 2 � ˆ σ µ � · J · � ˆ σ ν � + B · � ˆ σ µ � N Neglect of entanglement!? Monogamy of entanglement and mean-field ansatz for spin lattices – p.2/11

  3. Entanglement for Pure States Consider two spins (qubits) µ and ν : not entangled iff |↑� µ + |↓� µ |↑� ν + |↓� ν √ √ | Ψ µν � = | ψ µ � | ψ ν � , e . g ., 2 2 Maximum entanglement (Bell state) |↑� µ |↑� µ + |↓� ν |↓� ν √ | Ψ µν � = = | Bell � µν 2 General state with concurrence C with 0 ≤ C ≤ 1 √ √ C ˆ U µ ˆ | Ψ µν � = 1 − C | ψ µ � | ψ ν � + U ν | Bell � µν W.K. Wooters, Phys. Rev. Lett. 80 , 2245 (1998). Note: qutrits or three qubits are more complicated | Ψ GHZ � = |↑� |↑� |↑� + |↓� |↓� |↓� √ 2 Monogamy of entanglement and mean-field ansatz for spin lattices – p.3/11

  4. Mixed State of Two Spins µ ν General decomposition (not unique) � � Ψ I Ψ I � � � � ρ <µν> = ˆ p I µν µν � I Problem: consider all possible decompositions � � Ψ I Ψ I �� � � � �� ent(ˆ ρ <µν> ) = min p I , | Ψ I p I ent µν � µν µν I Problem solved for concurrence C (ˆ ρ <µν> ) (2 qubits) W.K. Wooters, Phys. Rev. Lett. 80 , 2245 (1998); A. Uhlmann, Phys. Rev. A 62 , 022307 (2000). Symmetric decomposition for general mixed states 4 � � : C (ˆ � Ψ I Ψ I � Ψ I Ψ I � � �� � � � � � �� ρ <µν> = ˆ p I ρ <µν> ) = C ∀ I µν µν µν µν I =1 Again: for 2 qubits only... Monogamy of entanglement and mean-field ansatz for spin lattices – p.4/11

  5. Monogamy of Entanglement Upper bound for concurrence of qubit-pairs T Hawking � C 2 (ˆ ρ µ ) ≥ τ 1 (ˆ ρ µ ) = 4 det(ˆ ρ <µν> ) ν ρ µ ) ≤ 1 with one-tangle τ 1 (ˆ |0> V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61 , 052306 (2000); t T.J. Osborne, F. Verstraete, Phys. Rev. Lett. 96 , 220503 (2006). r Lattice isotropy � � τ 1 1 C (ˆ ρ <µν> ) ≤ Z ≤ µ ν Z Entanglement decreases for large Z Expectation: mean-field ansatz becomes better Monogamy of entanglement and mean-field ansatz for spin lattices – p.5/11

  6. Ground State Energy µ ν H = 1 ˆ � � σ µ · J · ˆ ˆ B · ˆ σ ν + σ µ Z <µ,ν> µ 4 � with � � � Ψ I Ψ I � � � Insert ˆ ρ <µν> = p I µν µν I =1 √ √ C ˆ µ ˆ � Ψ I � ψ I � ψ I U I U I � � � � � � 1 − C ν | Bell � µν = + µν µ ν → estimate for ground-state energy 4 � ˆ √ H � p I � σ I σ I σ I σ I � � �� � ˆ µ � · J · � ˆ ν � + B · � ˆ µ � + � ˆ ν � + O ( = C ) N 2 I =1 � ˆ σ I ψ I � � � ψ I � � with � ˆ µ � = → mean-field ansatz σ µ µ µ Ergo: Z ≫ 1 → C ≪ 1 → mean-field behaviour Monogamy of entanglement and mean-field ansatz for spin lattices – p.6/11

  7. Intermediate Summary Concurrence C measures deviation from mean-field � ˆ − � ˆ √ H � mf H � exact ≤ ( || J || + 2 || B || ) C + O ( C ) N N → C = 0 only if mean-field yields exact ground state √ Large Z ≫ 1 → small C ≤ 1 / Z ≪ 1 → mean-field becomes better for large Z ≫ 1 Note: different from quantum de Finetti theorem (full permutational invariance vs lattice symmetry) E.g., Lipkin-Meshkov-Glick model H = 1 ˆ � � σ µ · J · ˆ B · ˆ ˆ σ ν + σ µ N µ,ν µ → large spin Σ = � µ ˆ σ µ /N Monogamy of entanglement and mean-field ansatz for spin lattices – p.7/11

  8. Example: Ising Model µ ν H = − J ˆ � � σ x σ x σ z ˆ µ ˆ ν − B ˆ µ Z <µ,ν> µ Mean-field ansatz: paramagnetic for B > | J | | Ψ mf � = |↑↑↑ . . . � Estimate for exact on-site density matrix √ C ) = |↑� �↑| + O (1 /Z 1 / 4 ) ρ µ = |↑� �↑| + O ( ˆ � → iterate monogamy argument C ≤ τ 1 /Z C ≤ O ( Z − 2 / 3 ) , ρ µ ) ≤ O ( Z − 1 / 3 ) τ 1 = 4 det(ˆ Hierarchy of correlations suggests C = O (1 /Z ) , τ 1 = O (1 /Z ) P. Navez, F. Queisser, R.S., J. Phys. A 47 ,225004 (2014). Monogamy of entanglement and mean-field ansatz for spin lattices – p.8/11

  9. Improved Mean-Field Ansatz Idea: add a little bit of entanglement for 2 spins | Ψ µν � = N (1 + ˆ σ µ · ξ · ˆ σ ν ) |↑� µ |↑� ν Generalisation to spin lattices � � � � σ x σ x � � | Ψ � imf = N |↑� µ , exp ξ ˆ µ ˆ ν <µ,ν> µ Variational ansatz � cos(2 ℑ ξ ) � Z � ˆ H � imf = − J 2 tanh(2 ℜ ξ ) − B cosh(2 ℜ ξ ) N Energy minimum for J 4 BZ + O (1 /Z 2 ) ❀ C = O (1 /Z ) ξ min = Monogamy of entanglement and mean-field ansatz for spin lattices – p.9/11

  10. XY-Model H = − J � 1 + γ ν + 1 − γ � ˆ � � σ x σ x σ y σ y σ z ˆ µ ˆ ˆ µ ˆ − B ˆ ν µ Z 2 2 <µ,ν> µ Scaling with anisotropy parameter γ J 4 BZ + O (1 /Z 2 ) ξ min = γ Scaling variable ζ = Z | ξ | C = 2 ζ − ζ 2 Θ(1 − ζ ) + O (1 /Z 2 ) Z → ξ min and C vanish in isotropic limit γ = 0 | Ψ imf � = | Ψ mf � = |↑↑↑ . . . � ↔ paramagnetic state is exact for B > | J | Monogamy of entanglement and mean-field ansatz for spin lattices – p.10/11

  11. Conclusions & Outlook µ ν Concurrence C measures deviation from mean-field � ˆ − � ˆ √ H � mf H � exact ≤ ( || J || + 2 || B || ) C + O ( C ) N N • C = 0 ↔ mean-field yields exact ground state √ • monogamy: Z ≫ 1 → C ≤ 1 / Z ≪ 1 • unique mean-field ground state: C = O ( Z − 2 / 3 ) • improved mean-field ansatz: C = O (1 /Z ) (note: not rigorously proven) Outlook: bi-partite → tri-partite entanglement... A. Osterloh, R.S., arXiv:1406.0311 Monogamy of entanglement and mean-field ansatz for spin lattices – p.11/11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend