moments of traces for circular ensembles
play

Moments of Traces for Circular -ensembles Tiefeng Jiang University - PowerPoint PPT Presentation

Moments of Traces for Circular -ensembles Tiefeng Jiang University of Minnesota This is a joint work with Sho Matsumoto September 19, 2014 Outline Moments for Haar Unitary Matrices (D.E. Thm) Background for Circular -Ensembles Moments


  1. Moments of Traces for Circular β -ensembles Tiefeng Jiang University of Minnesota This is a joint work with Sho Matsumoto September 19, 2014

  2. Outline Moments for Haar Unitary Matrices (D.E. Thm) Background for Circular β -Ensembles Moments for Circular β -Ensembles Proof by Jack Polynomials CLT

  3. 1. Moments for Haar Unitary Matrices ◮ What is Haar-invariant unitary matrix Γ n ? Mathematically, Γ n : Haar probability measure on U ( n ) : set of n by n unitary matrices.

  4. 1. Moments for Haar Unitary Matrices ◮ What is Haar-invariant unitary matrix Γ n ? Mathematically, Γ n : Haar probability measure on U ( n ) : set of n by n unitary matrices. Statistically, Assume the entries of Y = Y n × n are i.i.d. C N ( 0 , 1 ) . Two ways to generate such matrices

  5. 1. Moments for Haar Unitary Matrices ◮ What is Haar-invariant unitary matrix Γ n ? Mathematically, Γ n : Haar probability measure on U ( n ) : set of n by n unitary matrices. Statistically, Assume the entries of Y = Y n × n are i.i.d. C N ( 0 , 1 ) . Two ways to generate such matrices 1) The matrix Q in QR (Gram-Schmidt) decomposition of Y

  6. 1. Moments for Haar Unitary Matrices ◮ What is Haar-invariant unitary matrix Γ n ? Mathematically, Γ n : Haar probability measure on U ( n ) : set of n by n unitary matrices. Statistically, Assume the entries of Y = Y n × n are i.i.d. C N ( 0 , 1 ) . Two ways to generate such matrices 1) The matrix Q in QR (Gram-Schmidt) decomposition of Y d = Y ( Y ∗ Y ) − 1 / 2 2) Γ n

  7. ◮ Theorem (Diaconis and Evans: 2001) (a) a = ( a 1 , · · · , a k ) , b = ( b 1 , · · · , b k ) with a j , b j ∈ { 0 , 1 , 2 , · · · } . For n ≥ � k j = 1 ja j ∨ � k j = 1 jb j ,

  8. ◮ Theorem (Diaconis and Evans: 2001) (a) a = ( a 1 , · · · , a k ) , b = ( b 1 , · · · , b k ) with a j , b j ∈ { 0 , 1 , 2 , · · · } . For n ≥ � k j = 1 ja j ∨ � k j = 1 jb j ,   k k � ( Tr ( U j n )) a j ( Tr ( U j  = δ ab � j a j a j ! n )) b j E  j = 1 j = 1

  9. ◮ Theorem (Diaconis and Evans: 2001) (a) a = ( a 1 , · · · , a k ) , b = ( b 1 , · · · , b k ) with a j , b j ∈ { 0 , 1 , 2 , · · · } . For n ≥ � k j = 1 ja j ∨ � k j = 1 jb j ,   k k � ( Tr ( U j n )) a j ( Tr ( U j  = δ ab � j a j a j ! n )) b j E  j = 1 j = 1 (b) For j and k , Tr ( U j � � n ) Tr ( U k n ) = δ jk · j ∧ n . E

  10. O(n) COE Classical Circular Compact U(n)=CUE Ensembles Groups CSE Sp(n) Circular Ensembles and Haar-invariant Matrices from Classical Compact Groups

  11. O(n) COE Classical Circular Compact U(n)=CUE Ensembles Groups CSE Sp(n) Circular Ensembles and Haar-invariant Matrices from Classical Compact Groups Diaconis (2004) believes there is a good formula for COE and CSE

  12. 2. Background for Circular β -Ensembles ◮ Probability density function e i θ 1 , · · · , e i θ n : eigenvalues of Haar-invariant unitary matrix. pdf: f ( θ 1 , · · · , θ n | β = 2 )

  13. 2. Background for Circular β -Ensembles ◮ Probability density function e i θ 1 , · · · , e i θ n : eigenvalues of Haar-invariant unitary matrix. pdf: f ( θ 1 , · · · , θ n | β = 2 ) | e i θ j − e i θ k | β � f ( θ 1 , · · · , θ n | β ) = Const · 1 ≤ j < k ≤ n β > 0, θ i ∈ [ 0 , 2 π )

  14. 2. Background for Circular β -Ensembles ◮ Probability density function e i θ 1 , · · · , e i θ n : eigenvalues of Haar-invariant unitary matrix. pdf: f ( θ 1 , · · · , θ n | β = 2 ) | e i θ j − e i θ k | β � f ( θ 1 , · · · , θ n | β ) = Const · 1 ≤ j < k ≤ n β > 0, θ i ∈ [ 0 , 2 π ) This model: circular β -ensemble by physicist Dyson for study of nuclear scattering data. Matrix model by Killip & Nenciu (04)

  15. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4)

  16. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4) Construction of COE and CUE U = U n × n : Haar unitary

  17. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4) Construction of COE and CUE U = U n × n : Haar unitary U follows CUE

  18. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4) Construction of COE and CUE U = U n × n : Haar unitary U follows CUE U T U follows COE

  19. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4) Construction of COE and CUE U = U n × n : Haar unitary U follows CUE U T U follows COE CSE is similar but a bit involved (see Mehta)

  20. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4) Construction of COE and CUE U = U n × n : Haar unitary U follows CUE U T U follows COE CSE is similar but a bit involved (see Mehta) Entries of CUE : roughly independent C N ( 0 , 1 ) (Jiang, AP06)

  21. ◮ Three Important Circular Ensembles COE ( β = 1), CUE ( β = 2), CSE ( β = 4) Construction of COE and CUE U = U n × n : Haar unitary U follows CUE U T U follows COE CSE is similar but a bit involved (see Mehta) Entries of CUE : roughly independent C N ( 0 , 1 ) (Jiang, AP06) Entries of COE : roughly C N ( 0 , 1 ) (but dependent) (Jiang, JMP09)

  22. Moments for Circular β -Ensembles

  23. Moments for Circular β -Ensembles ◮ Bad news from COE: Let M n be COE. By elementary check 2 n | Tr ( M n ) | 2 � � E = n + 1

  24. Moments for Circular β -Ensembles ◮ Bad news from COE: Let M n be COE. By elementary check 2 n | Tr ( M n ) | 2 � � E = n + 1 Moments depend on n

  25. Moments for Circular β -Ensembles ◮ Bad news from COE: Let M n be COE. By elementary check 2 n | Tr ( M n ) | 2 � � E = n + 1 Moments depend on n � | Tr ( M n ) | 2 � Later results: E not depend on n only at β = 2

  26. Moments for Circular β -Ensembles ◮ Bad news from COE: Let M n be COE. By elementary check 2 n | Tr ( M n ) | 2 � � E = n + 1 Moments depend on n � | Tr ( M n ) | 2 � Later results: E not depend on n only at β = 2 This suggest: moments for general β -ensemble depend on n

  27. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition

  28. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition | λ | = λ 1 + λ 2 + · · · : weight

  29. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition | λ | = λ 1 + λ 2 + · · · : weight m i ( λ ) : multi of i in ( λ 1 , λ 2 , · · · )

  30. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition | λ | = λ 1 + λ 2 + · · · : weight m i ( λ ) : multi of i in ( λ 1 , λ 2 , · · · ) l ( λ ) = # of positive λ i in λ : length

  31. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition | λ | = λ 1 + λ 2 + · · · : weight m i ( λ ) : multi of i in ( λ 1 , λ 2 , · · · ) l ( λ ) = # of positive λ i in λ : length � i m i ( λ ) m i ( λ )! z λ = i ≥ 1

  32. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition | λ | = λ 1 + λ 2 + · · · : weight m i ( λ ) : multi of i in ( λ 1 , λ 2 , · · · ) l ( λ ) = # of positive λ i in λ : length � i m i ( λ ) m i ( λ )! z λ = i ≥ 1 p λ = � l ( λ ) i = 1 p λ i , where p k ( x 1 , x 2 , · · · ) = x k 1 + x k 2 + · · ·

  33. ◮ Notation λ = ( λ 1 , λ 2 , · · · ) : partition | λ | = λ 1 + λ 2 + · · · : weight m i ( λ ) : multi of i in ( λ 1 , λ 2 , · · · ) l ( λ ) = # of positive λ i in λ : length � i m i ( λ ) m i ( λ )! z λ = i ≥ 1 p λ = � l ( λ ) i = 1 p λ i , where p k ( x 1 , x 2 , · · · ) = x k 1 + x k 2 + · · · λ = ( 3 , 2 , 2 ) : | λ | = 7 , m 2 ( λ ) = 2 , m 3 ( λ ) = 1, l ( λ ) = 3 , i λ 3 i λ 2 i ) 2 p λ = ( � i ) · ( �

  34. α > 0, K ≥ 1, n ≥ 1 , define | α − 1 | � K � 1 − n − K + α δ ( α ≥ 1 ) A = | α − 1 | � K � B = 1 + n − K + α δ ( α < 1 )

  35. α > 0, K ≥ 1, n ≥ 1 , define | α − 1 | � K � 1 − n − K + α δ ( α ≥ 1 ) A = | α − 1 | � K � B = 1 + n − K + α δ ( α < 1 ) Let θ 1 , · · · , θ n ∼ f ( θ 1 , · · · , θ n | β ) , α = 2 /β. Z n = ( e i θ 1 , · · · , e i θ n ) , p µ ( Z n ) = p µ ( e i θ 1 , · · · , e i θ n )

  36. Theorem (a) If n ≥ K = | µ | , then � | p µ ( Z n ) | 2 � A ≤ E ≤ B α l ( µ ) z µ

  37. Theorem (a) If n ≥ K = | µ | , then � | p µ ( Z n ) | 2 � A ≤ E ≤ B α l ( µ ) z µ � � (b) If | µ | � = | ν | , then E p µ ( Z n ) p ν ( Z n ) = 0 .

  38. Theorem (a) If n ≥ K = | µ | , then � | p µ ( Z n ) | 2 � A ≤ E ≤ B α l ( µ ) z µ � � (b) If | µ | � = | ν | , then E p µ ( Z n ) p ν ( Z n ) = 0 . If µ � = ν and n ≥ K = | µ | ∨ | ν | , then � �� � � � � ≤ max {| A − 1 | , | B − 1 |}· α ( l ( µ )+ l ( ν )) / 2 ( z µ z ν ) 1 / 2 p µ ( Z n ) p ν ( Z n ) � E � � � �

  39. Theorem (a) If n ≥ K = | µ | , then � | p µ ( Z n ) | 2 � A ≤ E ≤ B α l ( µ ) z µ � � (b) If | µ | � = | ν | , then E p µ ( Z n ) p ν ( Z n ) = 0 . If µ � = ν and n ≥ K = | µ | ∨ | ν | , then � �� � � � � ≤ max {| A − 1 | , | B − 1 |}· α ( l ( µ )+ l ( ν )) / 2 ( z µ z ν ) 1 / 2 p µ ( Z n ) p ν ( Z n ) � E � � � � (c) ∃ C = C ( β ) s.t. ∀ m ≥ 1 , n ≥ 2 � ≤ Cn 3 2 n β � � | p m ( Z n ) | 2 � � − n � E � � m 1 ∧ β

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend