foundations of computing ii
play

Foundations of Computing II Lecture 24: Biased Estimation Stefano - PowerPoint PPT Presentation

CSE 312 Foundations of Computing II Lecture 24: Biased Estimation Stefano Tessaro tessaro@cs.washington.edu 1 Parameter Estimation Workflow Parameter estimate Independent Distribution + % Algorithm samples # ' , , # * (#|%)


  1. CSE 312 Foundations of Computing II Lecture 24: Biased Estimation Stefano Tessaro tessaro@cs.washington.edu 1

  2. Parameter Estimation – Workflow Parameter estimate Independent Distribution + % Algorithm samples # ' , … , # * ℙ(#|%) from ℙ(#|%) % = unknown parameter Maximum Likelihood Estimation (MLE). Given data # ' , … . , # * , find % = + + %(# ' , … , # * ) (“the MLE”) such that . # ' , … . , # * + % is maximized! 2

  3. Likelihood – Continuous Case Definition. The likelihood of independent observations # ' , … . , # * is * . # ' , … . , # * % = / 2(# 0 |%) 01' 3

  4. Example – Gaussian Parameters Normal outcomes # ' , … , # * , known variance 3 4 = 1 Goal: MLE for 6 = expectation * * 9 : ; < := > 1 * 9 : ; < := > 1 . # ' , … . , # * 6 = / 4 = / 4 28 28 01' 01' * # 0 − 6 4 ln . # ' , … . , # * 6 = − B ln 28 − C 2 2 01' 4

  5. Goal: estimate 6 = expectation Example – Gaussian Parameters * # 0 − 6 4 ln . # ' , … . , # * 6 = − B ln 28 − C 2 2 01' ; < := > F ' = 4 ⋅ 2 ⋅ # 0 − 6 ⋅ −1 = 6 − # 0 Note: F= 4 * * D D6 ln . # ' , … . , # * 6 = C (# 0 − 6) = C # 0 − B6 = 0 01' 01' * # 0 6 = ∑ 0 In other words, MLE is the H population mean of the data. B 5

  6. B samples # ' , … , # * ∈ ℝ from Gaussian P(6, 3 4 ) . Most likely 6 and 3 4 ? 0.5 0.4 0.3 0.2 0.1 0 −2 −1 0 1 3 −4 −3 2 4 6 5 6

  7. Two-parameter optimization Normal outcomes # ' , … , # * Goal: estimate % ' = µ = expectation and % 4 = 3 4 = variance * * : ; < :R S > 1 . # ' , … . , # * % ' , % 4 = / 9 4R > 28% 4 01' ln . # ' , … . , # * % ' , % 4 = * # 0 − % ' 4 = −B ln 28 % 4 − C 2 2% 4 01' 7

  8. Two-parameter estimation * 4 ln . # ' , … . , # * % ' , % 4 = − ln 28 % 4 # 0 − % ' − C 2 2% 4 01' We need to find a solution + % ' , + % 4 to D ln . # ' , … . , # * % ' , % 4 = 0 D% ' D ln . # ' , … . , # * % ' , % 4 = 0 D% 4 8

  9. * # 0 − % ' 4 MLE for Expectation ln . # ' , … . , # * % ' , % 4 = −B ln 28 % 4 − C 2 2% 4 01' * D ln . # ' , … . , # * % ' , % 4 = 1 C (# 0 − % ' ) = 0 D% ' % 4 0 * # 0 In other words, MLE of expectation is % ' = ∑ 0 + (again) the population mean of the B data, regardless of % 4 9 What about the variance?

  10. MLE for Variance * 4 # 0 − T % ' , % 4 = −B ln 28 % 4 % ' ln . # ' , … . , # * T − C 2 2% 4 01' * = −B ln 28 − B ln % 4 − 1 4 # 0 − T C % ' 2 2 2% 4 01' * D − B + 1 4 # 0 − + ln . # ' , … . , # * + = 0 % ' , % 4 = 4 C % ' D% 4 2% 4 2% 4 01' * % U = 1 In other words, MLE of variance is the 4 + # 0 − + B C % ' population variance of the data. 01' 10

  11. So far • We have decided that MLE estimators are always good. • But why is it really the case? – Next: A natural property not always satisfied by MLE – And why MLE is nonetheless “good” 11

  12. When is an estimator good? Parameter estimate Distribution samples Z ' , … , Z * Θ * Algorithm ℙ(#|%) from ℙ(#|%) % = unknown parameter Definition. An estimator is unbiased if for all B ≥ 1 , X Θ * = % . 12

  13. * ] Recall: + Example – Coin Flips % = * Coin-flip outcomes # ' , … , # * , with B [ heads, B \ tails Fact. + % is unbiased Let ^ ' , … , ^ * be s.t. ^ 0 = 1 iff # 0 = _ (and 0 otherwise) In particular ℙ ^ 0 = 1 = % * * Θ = 1 Θ) = 1 X ^ 0 = 1 ` X(` B C ^ 0 B C B B ⋅ % = % 01' 01' 13

  14. Notes • Unbiasedness is not the ultimate goal either – Consider estimator which sets + % = 1 if first coin toss is heads, and + % = 0 otherwise – regardless of number of samples. – ℙ a * = 1 = % – X a * = % • Generally, we would like instead ℙ a * ≈ % with high probability as B → ∞ . – Will discuss this on Monday. – Unbiasedness is a step towards this. 14

  15. Example – Gaussian Normal outcomes Z ' , … , Z * iid according to P(6, 3 4 ) * Θ ' = ∑ 01' Z 0 ` B * Θ 4 = 1 4 ` Z 0 − ` B C Θ ' 01' 15

  16. Example – Gaussian Normal outcomes Z ' , … , Z * iid according to P(6, 3 4 ) * Z 0 Θ ' = ∑ 0 ` B * = B ⋅ 6 Θ ' ) = ∑ 01' X(Z 0 ) Therefore: Unbiased! X(` = 6 B B 16

  17. Example – Gaussian Assume: 3 4 > 0 Normal outcomes Z ' , … , Z * iid according to P(6, 3 4 ) * * Θ 4 = 1 1 4 4 ` Z 0 − ` ` Z 0 − ` B C Θ ' Θ 4 = B − 1 C Θ ' 01' 01' Unbiased! Example: B = 1 Θ 4 = 1 Θ ' = Z ' 1 Z ' − Z ' 4 = 0 X(` ` ` Θ 4 ) = 0 ≠ 3 4 1 = Z ' Next time: Unbiased estimator proof + more Therefore: Biased! intuition + confidence intervals 17

  18. Example – Consistency Assume: 3 4 > 0 Normal outcomes Z ' , … , Z * iid according to P(6, 3 4 ) * * Θ 4 = 1 1 4 4 ` Z 0 − ` ` Z 0 − ` B C Θ ' Θ 4 = B − 1 C Θ ' 01' 01' Population variance – Biased! Sample variance – Unbiased! Left ` Θ 4 converges to same value as right ` Θ 4 , i.e., 3 4 , as B → ∞. Left ` Θ 4 is “consistent” 18

  19. Consistent Estimators & MLE Parameter estimate Distribution samples Z ' , … , Z * Θ * Algorithm ℙ(#|%) from ℙ(#|%) % = unknown parameter Definition. An estimator is unbiased if X Θ * = % for all B ≥ 1 . Definition. An estimator is consistent if lim *→i X Θ j = % . (But not necessarily Theorem. MLE estimators are consistent. unbiased) 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend