computation of operators in wavelet coordinates
play

Computation of operators in wavelet coordinates Tsogtgerel Gantumur - PowerPoint PPT Presentation

Computation of operators in wavelet coordinates Tsogtgerel Gantumur and Rob Stevenson Department of Mathematics Utrecht University Tsogtgerel Gantumur - Computation of operators in wavelet coordinates - Sixth Minisimposium TIANA.


  1. Computation of operators in wavelet coordinates Tsogtgerel Gantumur and Rob Stevenson Department of Mathematics Utrecht University Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.1/22

  2. Overview Linear operator equation Lu = g with L : H → H ′ Riesz basis Ψ = { ψ λ } of H , e.g. u = � λ u λ ψ λ Infinite dimensional matrix-vector system Lu = g , with u = ( u λ ) λ and L : ℓ 2 → ℓ 2 Convergent iterations such as u ( i +1) = u ( i ) + α [ g − Lu ( i ) ] We can approximate Lu ( i ) by a finitely supported vector How cheap can we compute this approximation? The answer will depend on L and Ψ Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.2/22

  3. Linear operator equations Let Ω be an n -dimensional domain or smooth manifold H t ⊂ H t (Ω) be a subspace, and H − t be its dual space Consider the problem of finding u from Lu = g where L : H t → H − t is a self-adjoint elliptic operator of order 2 t and g ∈ H − t is a linear functional Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.3/22

  4. Differential operators Partial differential operators of order 2 t � � ∂ α v, a αβ ∂ β u � , � v, Lu � = | α | , | β |≤ t Example: The reaction-diffusion equation ( t = 1 ) � ∇ v · ∇ u + κ 2 vu, � v, Lu � = Ω Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.4/22

  5. Singular integral operators Boundary integral operators � [ Lu ]( x ) = K ( x, y ) u ( y ) d Ω y Ω with the kernel K ( x, y ) singular at x = y Example: The single layer operator for the Laplace BVP in 3 -d domain ( t = − 1 2 ) 1 K ( x, y ) = 4 π | x − y | Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.5/22

  6. Multiresolution analysis S 0 ⊂ ˜ ˜ S 1 ⊂ . . . ⊂ H − t S 0 ⊂ S 1 ⊂ . . . ⊂ H t and dim S j , dim ˜ S j = O (2 jn ) (dyadic refinements) S j contains all piecewise pols of degree d − 1 S j contains all piecewise pols of degree ˜ ˜ d − 1 S j is globally C r -smooth Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.6/22

  7. Wavelet bases Ψ = { ψ λ : λ ∈ Λ } is a Riesz basis for H t – each v ∈ H t has a unique expansion � c � v � ≤ � v � H t ≤ C � v � v = v λ ψ λ s.t. λ ∈ Λ For every index λ ∈ Λ , there is a number | λ | ∈ I N 0 called the level of ψ λ span { ψ λ : | λ | ≤ j } = S j � ψ λ , v � = 0 for any v ∈ ˜ S | λ |− 1 diam(supp ψ λ ) = O (2 −| λ | ) Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.7/22

  8. Typical wavelets ψ λ ψ µ x ψ λ is a piecewise polynomial of degree d − 1 � x k ψ λ ( x ) dx = 0 for k < ˜ ( ˜ d vanishing moments) d Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.8/22

  9. Galerkin methods Wavelet basis Ψ j := { ψ λ : | λ | ≤ j } of S j Stiffness L ( j ) = � Lψ λ , ψ µ � | λ | , | µ |≤ j load g ( j ) = � g, ψ λ � | λ |≤ j R N j Linear equation in I ( N j := dim S j ) L ( j ) u ( j ) = g ( j ) R N j SPD and g ( j ) ∈ I R N j → I R N j L ( j ) : I u ( j ) = � λ [ u ( j ) ] λ ψ λ approximates the solution of Lu = g Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.9/22

  10. Galerkin approximation If u ∈ H s for some s ∈ [ t, d ] ε ( j ) := � u ( j ) − u � H t ≤ O (2 − j ( s − t ) ) N j = dim S j = O (2 jn ) ε ( j ) ≤ O ( N − s − t ) n j Solve L ( j ) u ( j ) = g ( j ) with CG ❀ complexity O ( N j ) Similar estimates for FEM Better convergence? Adaptive methods? Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.10/22

  11. Nonlinear approximation Given u = ( u λ ) λ ∈ ℓ 2 Approximate u using N coeffs | u λ | λ Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.11/22

  12. Nonlinear approximation Given u = ( u λ ) λ ∈ ℓ 2 Approximate u using N coeffs | u λ | λ (arranged) Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.11/22

  13. Nonlinear approximation Given u = ( u λ ) λ ∈ ℓ 2 Approximate u using N coeffs | u λ | � �� � N biggest u N best approximation of u with #supp u N ≤ N Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.11/22

  14. Nonlinear approximation Given u = ( u λ ) λ ∈ ℓ 2 Approximate u using N coeffs | [ u N − u ] λ | N zeroes u N best approximation of u with #supp u N ≤ N Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.11/22

  15. Nonlinear vs. linear approximation τ,τ with 1 τ = 1 2 + s − t If u ∈ B s n for some s < d ε N = � u N − u � ≤ O ( N − s − t n ) If u ∈ H s for some s ≤ d , uniform refinement ε ( j ) = � u ( j ) − u � ≤ O ( N − s − t ) n j B s τ,τ is bigger than H s Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.12/22

  16. Besov vs. Sobolev regularity s d τ = 1 1 2 + s − t n B s τ,τ t 0 1 1 2 τ τ,τ with 1 τ = 1 2 + d − t [Dahlke, DeVore]: u ∈ B d "often" n Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.13/22

  17. Equivalent problem in ℓ 2 [Cohen, Dahmen, DeVore ’02] Wavelet basis Ψ = { ψ λ : λ ∈ Λ } Stiffness L = � Lψ λ , ψ µ � λ,µ and load g = � g, ψ λ � λ Linear equation in ℓ 2 (Λ) Lu = g L : ℓ 2 (Λ) → ℓ 2 (Λ) SPD and g ∈ ℓ 2 (Λ) u = � λ u λ ψ λ is the solution of Lu = g Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.14/22

  18. Richardson iterations in ℓ 2 u (0) = 0 u ( i +1) = u ( i ) + α [ g − Lu ( i ) ] i = 0 , 1 , . . . g and Lu ( i ) are infinitely supported Approximate them by finitely supported sequences Algorithm SOLVE [ N, L , g ] → u [ N ] ( N operations) #supp u [ N ] ≤ O ( N ) and ε [ N ] = � u [ N ] − u � → 0 as N → ∞ ε [ N ] speed of convergence? Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.15/22

  19. Complexity of SOLVE Matrix L is called q ∗ -computable, when for each N one can construct an infinite matrix L N s.t. for any q < q ∗ , � L N − L � ≤ O ( N − q ) having in each column O ( N ) non-zero entries whose computation takes O ( N ) operations [CDD’02]: Suppose that [ s < d − t � u N − u � ≤ O ( N − s ) n ] L is q ∗ -computable with q ∗ > s then for suitable g , u [ N ] = SOLVE [ N, L , g ] satisfies � u [ N ] − u � ≤ O ( N − s ) Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.16/22

  20. Computability [ L λ,µ ] λ ∈ Λ – µ -th column | L λ,µ | λ Approximate by N entries? Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.17/22

  21. Computability [ L λ,µ ] λ ∈ Λ – µ -th column arranged by modulus | L λ,µ | λ (arranged) N biggest entries? Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.17/22

  22. Computability [ L λ,µ ] λ ∈ Λ – µ -th column | L λ,µ | � �� � N Compute the N biggest entries Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.17/22

  23. Computability The µ -th column of the difference | [ L N − L ] λ,µ | � �� � N Need to locate the biggest entries a priori Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.17/22

  24. Compressibility L is called q ∗ -compressible, when L is q ∗ -computable assuming each entry of L is available at unit cost [CDD’01], [Stevenson ’04]: Suppose { ψ λ } are piecewise polynomial wavelets that are sufficiently smooth and have sufficiently many vanishing moments L is either differential or singular integral operator then L is q ∗ -compressible for some q ∗ ≥ d − t ( > s ) n Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.18/22

  25. Computability Distribute computational works over the entries W N Require: shaded area = O ( N ) Tsogtgerel Gantumur - “Computation of operators in wavelet coordinates” - Sixth Minisimposium TIANA. Amsterdam. Oct 2004. – p.19/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend