modia a domain specific
play

Modia - A Domain Specific Extension of Julia for Modeling and - PowerPoint PPT Presentation

Modia - A Domain Specific Extension of Julia for Modeling and Simulation Hilding Elmqvist, Mogram AB, Lund, Sweden Co-developers: Toivo Henningsson, Martin Otter Toivo H. Outline Rationale for Modia project Modia Language by examples


  1. Modia - A Domain Specific Extension of Julia for Modeling and Simulation Hilding Elmqvist, Mogram AB, Lund, Sweden Co-developers: Toivo Henningsson, Martin Otter Toivo H.

  2. Outline  Rationale for Modia project  Modia Language by examples  Modia Prototype  Summary Toivo H.

  3. Modelica for Systems Modeling  www.Modelica.org  A formal language to capture modeling knowhow  Equation based language - for convenience  Object oriented - for reuse  System topology - by connections  Terminal definitions - connectors  Icons AND equations - not only symbols system sine2 defaults V_l g freqHz=0.2 R3 p3 levelSetPoint R=1 T_S K2degC lossyGear C4 R11 n12 inertia4 inertia5 inertia6 spring3 K degC R=1 C=c4 k=67 C1 C3 C6 C7 c=1e4 n3 n4 n6 p2 n11 ratio=2 limiter limiter controller clutch oneWayClutch pressure J=2 J=2 J=2 feedback C=c1 + c2 C=l1 C=c2 + c3 + c4 C=l2 Pa2bar p_S R2 R6 R8 C9 brake n2 n8 n9 p4 n13 PI - R=1 R=1 R=-1 p C=c4 + c5 k=1e-5 uMax=500 T=120 sine temperature bearingFriction torque springDamper inertia1 inertia2 elastoBacklash inertia3 Op1 Op2 Op3 Op4 Op5 qm_S R1 n1 R4 R7 R9 R10 R=1 n5 n7 n10 n14 tau c=1e5 c=1e4 R=-1 R=1 R=-1 R=1 T J=2 J=2 J=2 m_flow pump SteamValve b=0.001 freqHz=5 d=20 m_flow C2 m R5 C=c2 G G1 G2 G3 G4 R=-1 sink evaporator massFlowRate C5 TAmbient convection fixed C=c2 q_F C8 degC p1 out1 q_F_Tab Y_Valve_Tab Gc T=25 C=c4 MW2W const k=1e6 offset=0 offset=0 Y_Valve k=20 Ground1 Toivo H.

  4. Modelica Basics  Object- and equation-oriented modeling language  Successfully utilized in industry for modeling, simulating and optimizing complex systems such as automobiles, aircraft, power systems, etc.  The dynamic behavior of system components is modelled by equations, for example, mass- and energy-balances.  Ordinary Differential Equations  Algebraic Equations  = DAE (Differential Algebraic Equations)  Modelica is quite different from ordinary programming languages since equations with mathematical expressions on both sides of the equals sign are allowed.  Structural and symbolic methods are used to compile such equations into efficient executable code. Toivo H.

  5. Why Modia ?  New needs of modeling features are requested  Need an experimental language platform  Modelica specification is becoming large and hard to comprehend  Could be complemented by a reference implementation  Functions/Algorithms in Modelica are not powerful  no advanced data structures such as union types, no matching construct, no type inference, etc  Possibility to utilize other language efforts for functions  Julia has perfect scientific computing focus  Modia - Julia macro set We hope to use this work to make contributions to the Modelica effort Toivo H.

  6. Modia – “Hello Physical World” model Modelica @ model FirstOrder begin model FirstOrder x = Variable(start=1) Real x(start=1); T = Parameter(0.5, info="Time constant") parameter Real T=0.5 "Time constant"; u = 2.0 # Same as Parameter(2.0) parameter Real u = 2.0; @ equations begin equation T*der(x) + x = u T*der(x) + x = u; end end M; end Toivo H.

  7. Connectors and Components - Electrical @ model Pin begin v=Float() i=Float(flow=true) end @ model OnePort begin p=Pin() n=Pin() v=Float() i=Float() @ equations begin v = p.v - n.v # Voltage drop 0 = p.i + n.i # KCL within component i = p.i end end @ model Resistor begin # Ideal linear electrical resistor @ extends OnePort() @ inherits i, v R=1 # Resistance @ equations begin R*i = v end end Toivo H.

  8. Coupled Models - Electrical Circuit @ model LPfilter begin R = Resistor(R=100) C = Capacitor(C=0.001) V = ConstantVoltage(V=10) @ equations begin connect(R.n, C.p) connect(R.p, V.p) connect(V.n, C.n) end end Toivo H.

  9. Web App – for connecting components  Bachelor thesis project  Create, connect, set parameters, simulate, plot, animate in 3D  Automatic placement and routing  Together with Modelon AB Toivo H.

  10. Web App – on smart phone  Scenario:  Working in your autonomous car Toivo H.

  11. Variable Constructor In general: time varying variable with attributes: type Variable variability::Variability T::DataType Short version: size value Var(; args...) = Variable(; args...) unit::SIUnits.SIUnit min Specialization for parameters: max Parameter(value; args...) = Var(variability=parameter, value=value; args...) start nominal info::AbstractString flow::Bool end Toivo H.

  12. Variable Declarations • # With Float64 type # With unit Often natural to provide type and size information v1 = Var(T=Float64) v2 = Var(T=Volt) • Unit handling with SIUnits.jl # With array type # Parameter with unit array = Var(T=Array{Float64,1}) m = 2.5kg matrix = Var(T=Array{Float64,2}) length = 5m # With fixed array sizes scalar = Var(T=Float64, size=()) array3 = Var(T=Float64, size=(3,)) matrix3x3 = Var(T=Float64, size=(3,3)) Toivo H.

  13. Type Declarations • # Type declarations Reuse of type and size definitions • Rotation matrices Float3(; args...) = Var(T=Float64, size=(3,); args...) • Needed to handle closed kinematic loops Voltage(; args...) = Var(T=Volt; args...) # Use of type declarations v3 = Float3(start=zeros(3)) v4 = Voltage(size=(3,), start=[220.0, 220.0, 220.0]Volt) Position(; args...) = Var(T=Meter; size=(), args...) Position3(; args...) = Position(size=(3,); args...) Rotation3(; args...) = Var(T=SIPrefix; size=(3,3), property=rotationGroup3D, args...) Toivo H.

  14. • Matrix equations • DAE index reduction needed MultiBody modeling • R_Rel equation differentiated (only phi time varying) • Rotation3() implies ”special orthogonal group”, SO(3) @ model Frame begin r_0 = Position3() @ equations begin R = Rotation3() R_rel = n*n' + (eye(3) - n*n')*cos(phi) – skew(n)*sin(phi) f = Force3(flow=true) # Cut-force resolved in connector frame t = Torque3(flow=true) # Cut-torque resolved in connector frame w = der(phi) end a = der(w) @ model Revolute begin # Revolute joint (1 rotational degree-of- # relationships between quantities of frame_a and of frame_b freedom, 2 potential states, optional axis flange) frame_b.r_0 = frame_a.r_0 n = [0,0,1] # Axis of rotation resolved in frame_a frame_b.R = R_rel*frame_a.R frame_a.f + R_rel'*frame_b.f = zeros(3) frame_a = Frame() frame_a.t + R_rel'*frame_b.t = zeros(3) frame_b = Frame() # d'Alemberts principle phi = Angle(start=0) tau = -n'*frame_b.t w = AngularVelocity(start=0) tau = 0 # Not driven a = AngularAcceleration() end tau = Torque() # Driving torque in direction of axis of rotation end R_rel = Rotation3() Toivo H.

  15. Type and Size Inference - Generic switch @ model Switch begin • Avoid duplication of models with different types sw=Boolean() • Types and sizes can be inferred from the environment of a model or start values provided, u1=Variable() either initial conditions for states or approximate start values for algebraic constraints. u2=Variable() • Inputs u1 and u2 and output y can be of any type y=Variable() @ equations begin y = if sw; u1 else u2 end end end Toivo H.

  16. Discontinuities - State Events • positive() and negative() introduces crossing functions @ model IdealDiode begin @ extends OnePort() @ inherits v, i s = Float(start=0.0) @ equations begin v = if positive(s); 0 else s end i = if positive(s); s else 0 end end end Toivo H.

  17. • Clock partitioning of equations • Clock inference • Synchronous Controllers Clocked equations active at ticks @ model DiscretePIController begin @ equations begin K=1 # Gain # sensor: Ti=1E10 # Integral time ud = sample(u, Clock(dt)) dt=0.1 # sampling interval # PI controller: ref=1 # set point e = ref-ud u=Float(); ud=Float() i = previous(i, Clock(dt)) + e y=Float(); yd=Float() yd = K*(e + i/Ti) e=Float(); i=Float(start=0) # actuator: y = hold(yd) end end Toivo H.

  18. Redeclaration of submodels MotorModels = [Motor100KW, Motor200KW, Motor250KW] # array of Modia models selectedMotor = motorConfig( ) # Int • More powerful than replaceable in Modelica @ model HybridCar begin Indexing @ extends BaseHybridCar( Conditional selection motor = MotorModels[selectedMotor](), gear = if gearOption1; Gear1(i=4) else Gear2(i=5) end ) end Toivo H.

  19. Multi-mode Modeling @ model Clutch begin • Set of model equations and the DAE index is changing flange1 = Flange() when clutch is engaged or disengaged flange2 = Flange() • New symbolic transformations and just-in-time compilation is made engaged = Boolean() for each mode of the system • Final results of variables before an event is used as initial conditions @ equations begin after the event if ! engaged • Mode changes with conditional equations might introduces flange1.tau = 0 inconsistent initial conditions causing Dirac impulses to occur flange2.tau = 0 else flange1.w = flange2.w flange1.tau + flange2.tau = 0 end end end Toivo H.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend