modeling and in inversion of the mic icrotremor h v v
play

MODELING AND IN INVERSION OF THE MIC ICROTREMOR H/V /V SPECTRAL - PowerPoint PPT Presentation

MODELING AND IN INVERSION OF THE MIC ICROTREMOR H/V /V SPECTRAL RATIO: TH THE PHYSICAL BASI SIS BEHIND TH THE DIF IFFUSE FIE IELD APPROACH Francisco J. Snchez-Sesma Instituto de Ingeniera, Universidad Nacional Autnoma de Mxico


  1. MODELING AND IN INVERSION OF THE MIC ICROTREMOR H/V /V SPECTRAL RATIO: TH THE PHYSICAL BASI SIS BEHIND TH THE DIF IFFUSE FIE IELD APPROACH Francisco J. Sánchez-Sesma Instituto de Ingeniería, Universidad Nacional Autónoma de México Coyoacán, 04510 CDMX, Mexico Email: sesma@unam.mx 5th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion Taipei, Taiwan, August 15-17, 2016 1

  2. Outline Microtremor H/V (MHVSR)  Site Characterization Multiple Diffraction  Diffuse Fields  Coda ~ Noise Correlations  Green’s Function  Equipartition & Isotropy Auto-Correlations  Energy Densities  Im G 11 ( x , x , ω ) H/V from Ambient Seismic Noise is modeled as 2Im𝐻 11 /Im𝐻 33 Elastic Im G 11 (0,0, ω ) behavior suggests simple 3D models Inversion of H/V  Cauchy’s theorem  Soil Information Joint inversion of H/V and DC  mitigates non-unicity New software allows modeling and inversion of MHVSR. 2

  3. Mic icrotemor H/V /V Spectral Ratio MHVSR Site Characterization   f 0 Site effects Amplification and Duration 3

  4. Microtremor H/V /V Spectral Ratio M MHVSR Ellipticity SH TF H/V • Nogoshi & Igarashi (1971 ): 2.32 HZ 2.48 Hz 2.38 HZ Microtremors  Surface Waves • Others Authors H  H H/V ≡ Rayleigh Ellipticity V V m Average • Nakamura (1989) of Ratios H/V ≡ Transfer Function SH wave  2 2 H H H • Arai & Tokimatsu (2004)  EWm NSm Ratio of Averages 2 V V m • Sánchez-Sesma et al. (2011) H/V ≡ All Waves (Diffuse Field Theory) 4

  5. Weaver & Lobkis (2002) Ultrasonics

  6. Campillo & Paul (2003) Science

  7. Shapiro et al (2005) show waveforms emerging from cross- correlations of ambient seismic noise and compared them with Rayleigh waves excited by earthquakes 30 30 days of ambie ient noise ise. . USArray

  8. Mult ltiple scattering C Coda N Noise Dif iffu fuse Fie ield Kanai (1932) Propagation Few bounces (short times) Regimes & Radiative Transfer Energy Density Decay Difussion (long times) temps Noise Coda time

  9. Directional Energy Densities = Auto-Correlations  Im[ G ( x , x , ω )]          2 * 1 ( x , ) u ( x ) u ( x ) 2 k Im[ G ( x , x , )] 1 1 1 S 11 Directional Energy Density (DED) is proportional to the imaginary part of Green’s function at the source itself. This is clear from the full-space solution (Stokes,1849):     1 2       x x Im[ G ( , , )]    11 3 3   12     3        3 P S ( 1 2 R )  1 S 3 6 3 3 3 10

  10. 1 1 1 1 1              P 1 P SV SH 3 1 2 R 3 6 2 3 3 1 1 1 1 R              2 P SV SH SH 3 1 2 R 3 6 2 3 3 1 2 1 R            3 P SV SV 3 3 3 3 1 2 R Weaver (1985) JASA Sánchez-Sesma & Campillo (2006) BSSA 11

  11. A Theory for H/V With Directional Energy Densities the H/V ratio is:    E ( x ; ) E ( x ; )   1 2 [ H / V ]( x ; )  E ( x ; ) 3    Im[ G ( x , x ; )] Im[ G ( x , x ; )]   11 22 [ H / V ]( x ; )  Im[ G ( x , x ; )] 33 measurements  system properties Sánchez-Sesma et al. (2011) Kawase et al. (2011) 3D problem (BW & SW) 1D problem (BW) Matsushima et al. (2014) 2.5D Lontsi et al. (2015) 1D case (Lateral heterogeneity) H/V ( z , ω ) Data at depth 12

  12. Green’s function calculation The imaginary parts of the Green's functions, using Harkrider (1964) notation can be written as :    r   i          V   Im G r ; Im f k J kr dk   33 P SV 0  2  0         z    Im G r ; Im G r ; 22 11         i   i                         H  Im G r ; Im f k J kr J kr dk f k J kr J kr dk    11 SH 0 2 P SV 0 2 4 4                             0 0      SH P SV 13

  13. Two bli lind tests (Synthetic Noise & DFA) Model N101 0 -50 -100 Depth (m) -150 -200 -250 -300 0 200 400 600 800 1000 1200 1400 1600 1800  (m/s),  (m/s),  (Ton/m 3 )  100 Model N104 0 -50 -100 Depth (m) -150 -200 -250 -300 -350 -400 0 1000 2000 3000 4000 5000 6000  (m/s),  (m/s),  (Ton/m 3 )  100 Frequency [Hz] 14

  14. The Texcoco Experiment 2 10 H/V = √ 2 Im[G 11 ] /Im[G 33 ] 1 10 0 10 H/V 0.47Hz -1 -1 10 10 -2 -1 0 1 -2 -1 0 1 10 10 10 10 10 10 10 10 Frequency [Hz] Frequency [Hz] 0.45 0.4 Im[G 22 ] =Im[G 11 ] 0.35 Im[Green functions] 0.3 Im[G 33 ] 0.25 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 freq [Hz] 15

  15. Simplified model in 3D  G  0  z    ( x ) x     2 2 G k G h  2 c  G 0 z 16

  16. Frequency and time domains 3D   Im G ( 0 , 0 , ) PRS ( 0 , 0 , t )      n 1 1 d ( t )  ( 1 )         ( t n ) sgn( t )  2   2 c 2 h dt n  n 0 18

  17. Green’s function calculation Cauchy’s Residue theorem The integrand of the Green’s function has simple poles isolated on the real axis k and branch points ω/β y ω/α. ik I II     Im 0 Im 0   N N     Im 0 Im 0   N N           N N N N III k Simple poles IV Branch points     Im ( ) 0 ; Re ( ) 0   Augustin-Louis Cauchy N N Integration countour     Im ( ) 0 ; Re ( ) 0   Branch cut N N

  18. Position of poles Dispersion curves of Integrand of Im G 33 (0,0; f =5 Hz, k ) Rayleigh waves 6 1000 Phase Velocity (m/s) Body Waves Amplitude 4 Surface Waves Branch points ( ω / α N ) 800 Branch points ( ω / β N ) 2 600 0 400 0.5 1 1.5 2 2.5 0 2 4 6 8 10 k / ( ω / β N ) f ( Hz )

  19. Green function calculation The imaginary parts of the Green's function is computed as (García-Jerez et al., 2013):             N   1 1               2 H   Im G A A Re f k f k dk  th th  11 m Rm Lm P SV SH 4 4 4   4   m Rayleigh m Love                             0 Body Waves Surface Waves            Im G Im G 22 11       N   1 1         V Im G A Re f k dk  th  33 Rm P SV 4 2 2     m Rayleigh              0 Surface Waves Body Waves

  20. Several views of H/V Profile Velocity Foward Problem

  21. Inverse Problem Inverse Problem   2     Th . E xp.        H V / H V /       1 i i  E     2 n i i

  22. Inversion (Simulated Annealing)

  23. Inversion example of H/V

  24. Application to site effect characterization at Texcoco, México D.F.

  25. Non-uniqueness of H/V, dispersion curves Velocity Profile Rayleigh Love Rayleigh Love Rayleigh Love H/V H/V H/V

  26. Cost function map for H/V & dispersion curves joint inversion Functional H/V & Dispersion curves

  27. Cost function map for H/V & dispersion curves joint inversion Functional H/V & Dispersion curves Log Error 1 V S 2 V S Log Error 1 V S 2 V S

  28. Example of joint inversion

  29. Application to site effect characterization at Almería, Río Andarax, Spain (1/2) SPAC - Pentagonal Array Rmax 450m At each station, we computed H/V Also local dispersion curves are computed using SPAC technique Stations distribution (from Dr. E. Carmona)

  30. Application to site effect characterization at Almería, Río Andarax, Spain (2/2)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend