robust and efficient fitting of claim severity
play

Robust and Efficient Fitting of Claim Severity Distributions Vytaras - PowerPoint PPT Presentation

Robust and Efficient Fitting of Claim Severity Distributions Vytaras Brazauskas a,b University of Wisconsin-Milwaukee 44th Actuarial Research Conference Madison, WI, July 30August 1, 2009 a In collaboration with Jones and Zitikis (University


  1. Robust and Efficient Fitting of Claim Severity Distributions Vytaras Brazauskas a,b University of Wisconsin-Milwaukee 44th Actuarial Research Conference Madison, WI, July 30–August 1, 2009 a In collaboration with Jones and Zitikis (University of Western Ontario) b Supported by a grant from the Actuarial Foundation, SOA, and CAS

  2. Outline 1. Introduction – Preliminaries – Motivation 2. Method of Trimmed Moments – Definition – Asymptotic Properties – Examples – Simulations 3. Illustrations and Conclusions – Real-Data Examples – Concluding Remarks

  3. 1. I NTRODUCTION Preliminaries 1. Introduction Preliminaries • Claim Severity Distributions ⊲ S TATISTICAL O BJECTIVE : + Accurate model fit ⊲ A CTUARIAL O BJECTIVES : + Risk evaluations + Ratemaking + Reserve calculations 1

  4. 1. I NTRODUCTION Preliminaries • Standard Estimation & Fitting Techniques ⊲ E MPIRICAL N ONPARAMETRIC + Simple approach + Weak assumptions 2

  5. 1. I NTRODUCTION Preliminaries • Standard Estimation & Fitting Techniques ⊲ E MPIRICAL N ONPARAMETRIC + Simple approach + Weak assumptions – Lack of smoothness – Limited to the range of observed data 2

  6. 1. I NTRODUCTION Preliminaries • Standard Estimation & Fitting Techniques ⊲ E MPIRICAL N ONPARAMETRIC + Simple approach + Weak assumptions – Lack of smoothness – Limited to the range of observed data ⊲ P ARAMETRIC + Efficiency + Smoothness + Stretchability beyond the range of observed data + Special distributional features (e.g., mode at 0) 2

  7. 1. I NTRODUCTION Preliminaries • Standard Estimation & Fitting Techniques ⊲ E MPIRICAL N ONPARAMETRIC + Simple approach + Weak assumptions – Lack of smoothness – Limited to the range of observed data ⊲ P ARAMETRIC + Efficiency + Smoothness + Stretchability beyond the range of observed data + Special distributional features (e.g., mode at 0) – Strong assumptions – Outliers (e.g., loss that receives an extensive media attention) 2

  8. 1. I NTRODUCTION Motivation Motivation ⊲ N OT R OBUST : maximum likelihood, method-of-moments ⊲ R OBUST : M -, L -, R -statistics 3

  9. 1. I NTRODUCTION Motivation Motivation ⊲ N OT R OBUST : maximum likelihood, method-of-moments ⊲ R OBUST : M -, L -, R -statistics ⊲ M ( maximum likelihood type) + Most popular + Easy to generalize 3

  10. 1. I NTRODUCTION Motivation Motivation ⊲ N OT R OBUST : maximum likelihood, method-of-moments ⊲ R OBUST : M -, L -, R -statistics ⊲ M ( maximum likelihood type) + Most popular + Easy to generalize – Computationally complex – Lack of transparency 3

  11. 1. I NTRODUCTION Motivation Motivation ⊲ N OT R OBUST : maximum likelihood, method-of-moments ⊲ R OBUST : M -, L -, R -statistics ⊲ M ( maximum likelihood type) + Most popular + Easy to generalize – Computationally complex – Lack of transparency ⊲ L ( linear combinations of order statistics) – Not easy to generalize 3

  12. 1. I NTRODUCTION Motivation Motivation ⊲ N OT R OBUST : maximum likelihood, method-of-moments ⊲ R OBUST : M -, L -, R -statistics ⊲ M ( maximum likelihood type) + Most popular + Easy to generalize – Computationally complex – Lack of transparency ⊲ L ( linear combinations of order statistics) – Not easy to generalize + Computer friendly + Transparent 3

  13. 2. M ETHOD OF T RIMMED M OMENTS Definition 2. Method of Trimmed Moments Definition • Assumptions & Notation ⊲ D ATA : X 1 , . . . , X n i.i.d. with cdf F ⊲ CDF : + F is continuous + F depends on θ 1 , . . . , θ k ( unknown parameters) ⊲ O RDERED D ATA : X 1: n ≤ · · · ≤ X n : n 4

  14. 2. M ETHOD OF T RIMMED M OMENTS Definition • Three-Step Procedure 1. S AMPLE T RIMMED M OMENTS : n − m ∗ n ( j ) X 1 µ j = b h j ( X i : n ) n − m n ( j ) − m ∗ n ( j ) i = m n ( j )+1 j = 1 , . . . , k , with m n ( j ) /n ≈ a j , m ∗ n ( j ) /n ≈ b j chosen trimming proportions, h j chosen function. 5

  15. 2. M ETHOD OF T RIMMED M OMENTS Definition • Three-Step Procedure 1. S AMPLE T RIMMED M OMENTS : n − m ∗ n ( j ) X 1 µ j = b h j ( X i : n ) n − m n ( j ) − m ∗ n ( j ) i = m n ( j )+1 j = 1 , . . . , k , with m n ( j ) /n ≈ a j , m ∗ n ( j ) /n ≈ b j chosen trimming proportions, h j chosen function. 2. P OPULATION T RIMMED M OMENTS : Z 1 − b j 1 h j ( F − 1 ( u )) d u µ j := µ j ( θ 1 , . . . , θ k ) = 1 − a j − b j a j j = 1 , . . . , k . 5

  16. 2. M ETHOD OF T RIMMED M OMENTS Definition 3. M ATCH & S OLVE : 8 > µ 1 ( θ 1 , . . . , θ k ) = µ 1 , b > > < . . . > > > : µ k ( θ 1 , . . . , θ k ) = µ k . b 6

  17. 2. M ETHOD OF T RIMMED M OMENTS Definition 3. M ATCH & S OLVE : 8 > µ 1 ( θ 1 , . . . , θ k ) = µ 1 , b > > < . . . > > > : µ k ( θ 1 , . . . , θ k ) = µ k . b • MTM estimators of θ 1 , . . . , θ k � . . . . . . , � θ 1 = g 1 ( � µ k ) , θ k = g k ( � µ k ) . µ 1 , . . . , � µ 1 , . . . , � 6

  18. 2. M ETHOD OF T RIMMED M OMENTS Asymptotic Properties Asymptotic Properties � � � ( θ 1 , . . . , θ k ) , n − 1 DΣD ′ � θ 1 , . . . , � � is AN θ k 7

  19. 2. M ETHOD OF T RIMMED M OMENTS Asymptotic Properties Asymptotic Properties � � � ( θ 1 , . . . , θ k ) , n − 1 DΣD ′ � θ 1 , . . . , � � is AN θ k ˛ ˛ where D k × k with d ij = ∂g i ( µ 1 ,...,µ k ) and Σ k × k with ˛ ∂ b µ j 1 σ 2 = ij (1 − a i − b i )(1 − a j − b j ) Z 1 − b i Z 1 − b j ` ´ ` ´ ` ´ F − 1 ( v ) F − 1 ( u ) × min { u, v } − uv d h j d h i a i a j 7

  20. 2. M ETHOD OF T RIMMED M OMENTS Examples Examples • Location-Scale Families ⊲ CDF , QF : � x − θ � F ( x ) = F 0 − ∞ < x < ∞ , , σ F − 1 ( u ) = θ + σF − 1 ( u ) , 0 < u < 1 . 0 where θ ∈ R , σ > 0 , and F 0 is the standard version of F . ⊲ F UNCTIONS h : h 2 ( t ) = t 2 . h 1 ( t ) = t, 8

  21. 2. M ETHOD OF T RIMMED M OMENTS Examples ⊲ S AMPLE TM S : n − m ∗ X n 1 X j µ j = b i : n , j = 1 , 2 n − m n − m ∗ n i = m n +1 ⊲ P OPULATION TM S : Z 1 − b 1 F − 1 ( u ) d u µ 1 = 1 − a − b a θ + σ × c 1 = Z 1 − b h i 2 1 F − 1 ( u ) µ 2 = d u 1 − a − b a θ 2 + 2 θσ × c 1 + σ 2 × c 2 = 9

  22. 2. M ETHOD OF T RIMMED M OMENTS Examples ⊲ MTM of ( θ, σ ) : 8 > b > θ MTM = µ 1 − c 1 b σ MTM b < q > ‹ > : µ 2 ( c 2 − c 2 µ 2 − b σ MTM b = ( b 1 ) 1 ) ⊲ A SYMPTOTICS : „ « ( θ, σ ) , σ 2 `b ´ is AN θ MTM , b σ MTM n S ⊲ E XAMPLES of F 0 and log F 0 : Cauchy, Gumbel, Laplace, Logistic, Normal, Student’s t ; and log-Cauchy, Weibull, log-Laplace, loglogistic, lognormal, log- t . 10

  23. 2. M ETHOD OF T RIMMED M OMENTS Examples • Lognormal Model ⊲ CDF , QF : „ log( x − x 0 ) − θ « F ( x ) = Φ σ log( F − 1 ( u ) − x 0 ) = θ + σ Φ − 1 ( u ) θ ∈ R , σ > 0 , x > x 0 ( known deductible), 0 < u < 1 , and Φ , Φ − 1 are CDF , QF of N (0 , 1) . ⊲ F UNCTIONS h : h 2 ( t ) = log 2 ( t − x 0 ) h 1 ( t ) = log( t − x 0 ) , 11

  24. 2. M ETHOD OF T RIMMED M OMENTS Examples „ « `b ´ ( θ, σ ) , σ 2 θ MLE , b σ MLE is AN n S 0 p `b T ABLE 1: ARE (( b | S 0 | / | S | . θ MTM , b σ MTM ) , θ MLE , b σ MLE )) = b a 0 0.05 0.15 0.49 0.70 0 1 .932 .821 .502 .312 0.05 .872 .771 .470 .286 0.15 .676 .390 .208 0.49 .074 – 0.70 – 12

  25. 2. M ETHOD OF T RIMMED M OMENTS Examples „ « `b ´ ( θ, σ ) , σ 2 θ MLE , b σ MLE is AN n S 0 p `b T ABLE 1: ARE (( b | S 0 | / | S | . θ MTM , b σ MTM ) , θ MLE , b σ MLE )) = b a 0 0.05 0.15 0.49 0.70 0 1 0.05 .932 .872 0.15 .821 .771 .676 0.49 .502 .470 .390 .074 0.70 .312 .286 .208 – – 12

  26. 2. M ETHOD OF T RIMMED M OMENTS Examples „ « `b ´ ( θ, σ ) , σ 2 θ MLE , b σ MLE is AN n S 0 p `b T ABLE 1: ARE (( b | S 0 | / | S | . θ MTM , b σ MTM ) , θ MLE , b σ MLE )) = b a 0 0.05 0.15 0.49 0.70 0 1 .932 .821 .502 .312 0.05 .932 .872 .771 .470 .286 0.15 .821 .771 .676 .390 .208 0.49 .502 .470 .390 .074 – 0.70 .312 .286 .208 – – 12

  27. 2. M ETHOD OF T RIMMED M OMENTS Examples • Pareto Model ⊲ CDF , QF : � x � − α F ( x ) = 1 − , x 0 F − 1 ( u ) = x 0 (1 − u ) − 1 /α α > 0 , x > x 0 ( known deductible), 0 < u < 1 . ⊲ F UNCTION h 1 : h 1 ( t ) = log t 13

  28. 2. M ETHOD OF T RIMMED M OMENTS Examples ⊲ MTM of α : α MTM = const 1 b µ 1 b ⊲ A SYMPTOTICS : „ « α, α 2 α MTM is AN b n Const 1 ⊲ C OMPARISON with MLE: „ « α, α 2 n P n AN α MLE = b is i =1 log( X i /x 0 ) n 14

  29. 2. M ETHOD OF T RIMMED M OMENTS Examples T ABLE 2: ARE ( b α MTM , b α MLE ) = 1 /Const 1 . b a 0 0.05 0.10 0.15 0.25 0.49 0.70 0 1 .918 .847 .783 .666 .423 .238 0.05 .918 .848 .783 .667 .425 .242 0.10 .848 .785 .669 .430 .250 0.15 .787 .672 .437 .261 0.25 .679 .452 .285 0.49 .487 – 0.70 – 15

  30. 2. M ETHOD OF T RIMMED M OMENTS Examples T ABLE 2: ARE ( b α MTM , b α MLE ) = 1 /Const 1 . b a 0 0.05 0.10 0.15 0.25 0.49 0.70 0 1 0.05 1.00 .918 0.10 1.00 .918 .848 0.15 .999 .919 .850 .787 0.25 .995 .918 .851 .790 .679 0.49 .958 .897 .839 .786 .688 .487 0.70 .857 .824 .781 .738 .659 – – 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend