mixed collocation for fractional differential equations
play

Mixed Collocation for Fractional Differential Equations cois Dubois - PowerPoint PPT Presentation

Groupe de travail Num erique Orsay, 03 d ecembre 2003. Mixed Collocation for Fractional Differential Equations cois Dubois e and Fran St ephanie Mengu Conservatoire Nat. des Arts et M etiers,


  1. Groupe de travail Num´ erique Orsay, 03 d´ ecembre 2003. Mixed Collocation for Fractional Differential Equations cois Dubois ∗ † e ‡ and Fran¸ St´ ephanie Mengu´ ∗ Conservatoire Nat. des Arts et M´ etiers, Saint-Cyr-L’Ecole, France , E.U. † CNRS, laboratoire ASCI, Orsay, France, E.U. ‡ Laboratoire Syst` emes de Communication, Universit´ e de Marne La Vall´ ee, Marne La Vall´ ee, France, E.U.

  2. International Conference on Numerical Algorithms, Dedicated to Claude Br´ ezinski. Marrakesh, Marocco, October 1-5, 2001. Mixed Collocation for Fractional Differential Equations cois Dubois ∗ † e ‡ and Fran¸ St´ ephanie Mengu´ ∗ Conservatoire Nat. des Arts et M´ etiers, Saint-Cyr-L’Ecole, France , E.U. † CNRS, laboratoire ASCI, Orsay, France, E.U. ‡ Laboratoire Syst` emes de Communication, Universit´ e de Marne La Vall´ ee, Marne La Vall´ ee, France, E.U.

  3. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. Summary 1) Introduction 2) Mixed collocation numerical scheme 3) First numerical tests 4) Nonlinear model with a singularity 5) Conclusion 3

  4. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. Introduction The letter β, 0 < β < 1 , is a real number, • Γ( • ) is the classical Euler function. Fractional differential operator D β ( • ) : • � t 1 d u d θ ( D β u ) ( t ) ≡ (1) ( t − θ ) 1 − β . Γ (1 − β ) d θ 0 Fractional ordinary differential equation of order β : • D β ( u − u 0 ) � = Φ ( u ( t ) , t ) , t > 0 (2) = 0 , t ≤ 0 . u − u 0 4

  5. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. Discretization • Discretization step h > 0 . Discrete space P h 1 : • continuous functions that are affine in each mesh element ] jh, ( j + 1) h [ . Discrete space Q h 0 : constant functions in each element. • Fractional integrator I β of order β : • � t 1 I β ( v ( • ) , t ) ≡ 0 ( t − θ ) β − 1 v ( θ ) d θ . (3) Γ ( β ) 5

  6. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. Mixed collocation numerical scheme (i) Integrate the equation (2) with the fractional integrator I β (3) : • u ( t ) − u 0 = I β (Φ ( u ( • ) , t )) , (4) t ≥ 0 . Low order ( P 1 Q 0 ) mixed collocation method : choose • a discrete state u h ( • ) satisfying u h ∈ P h 1 a flux f h ≃ Φ ( u ( • ) , t ) according to the condition f h ∈ Q h 0 . • Write the equation (4) at the grid points jh ( j ∈ N ) : u h ( jh ) − u 0 = I β � f h ( • ) , jh � (5) , j ∈ N . 6

  7. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. Mixed collocation numerical scheme (ii) Mean value of the approached flux f h ( • ) : • equal to the mean value of the exact flux in each element : � ( j +1) h � ( j +1) h f h ( θ ) d θ ≡ u h ( θ ) , θ � � (6) Φ d θ . jh jh ”Projection step” on the discrete space Q h 0 : • � 1 f h � u h j (1 − θ ) + θu h � (7) = 0 Φ j +1 , jh + θh d θ , j ∈ N . j + 1 2 7

  8. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. Mixed collocation numerical scheme (iii) • ”State-flux constraint” for the scheme P 1 Q 0 : the relations (5)(7) take the form j − 1 h β h β u h Γ ( β + 1) f h α j − k f h � (8) j +1 − = u 0 + , j ∈ N , j + 1 k + 1 Γ ( β + 1) 2 2 k =0 α k ≡ ( k + 1) β − k β , with k ∈ N . • Newton method for the numerical solution of equations (7) (8) ; ” Semidif ” software, see http : //www.laas.fr/gt-opd/ (free of charge !). 8

  9. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (i) • Elementary tests with β = 0 . 5 and Dynamics Φ ( u , t ) ≡ g ( t ) with g ( • ) chosen as : √ √ π , √ π t , g 1 ( t ) = 1 2 g 3 ( t ) = 3  g 2 ( t ) = √ π t , 2 4  √ (9) √ π t 2 . 8 g 5 ( t ) = 15 g 4 ( t ) = 3 √ π t t , 16  • Then the solution of equation (2) is simply � √ � j , (10) u j ( t ) ≡ t j = 1 , · · · , 5 . as shown on the following figures. 9

  10. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (ii) 1.2 1/2 Solution exacte u 1 (t) = t Schéma de GL à deux points Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 D 1/2 u 1 = π 1/2 /2 0.6 0.4 Solutions exacte et approchées avec 8 points 0.2 0 0 0.2 0.4 0.6 0.8 1 √ Numerical solution of D 1 / 2 u = g 1 ( t ) ; u ( t ) = Figure 1. t. 10

  11. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (iii) 1.2 Solution exacte u 2 (t)= t Schéma de GL à deux points Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 D 1/2 u 2 = 2 (t/ π ) 1/2 0.6 0.4 0.2 Solutions exacte et approchées avec 8 points 0 0 0.2 0.4 0.6 0.8 1 Numerical solution of D 1 / 2 u = g 2 ( t ) ; u ( t ) = t. Figure 2. 11

  12. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (iv) 1.2 3/2 Solution exacte u 3 (t)= t Schéma de GL à deux points Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 D 1/2 u 3 = 3 π 1/2 t / 4 0.6 0.4 0.2 Solutions exacte et approchées avec 8 points 0 0 0.2 0.4 0.6 0.8 1 √ Numerical solution of D 1 / 2 u = g 3 ( t ) ; u ( t ) = t Figure 3. t. 12

  13. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (v) 1.2 2 Solution exacte u 4 (t)= t Schéma de GL à deux points D 1/2 u 4 = 8 t 3/2 / 3 π 1/2 Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 0.6 Solutions exacte et approchées avec 8 points 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Numerical solution of D 1 / 2 u = g 4 ( t ) ; u ( t ) = t 2 . Figure 4. 13

  14. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (vi) 1.2 5/2 Solution exacte u 5 (t)= t Schéma de GL à deux points D 1/2 u 5 = 15 π 1/2 t 2 / 16 Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 0.6 Solutions exacte et approchées avec 8 points 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Numerical solution of D 1 / 2 u = g 5 ( t ) ; u ( t ) = t 2 √ Figure 5. t. 14

  15. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (vii) • Orders of convergente with mesh steps h , 1 h = 2 n , 3 ≤ n ≤ 13 . 2 relatively to the norm L 2 and e n ∞ for the norm L ∞ : Errors e n • � � j � | u (0) − u 0 | 2 2 n − 1 + | u (1) − u 2 n | 2 √ 2 � � � � � e n � � � (11) 2 ≡ h + � u − u j . � � � 2 n 2 2 � j =1 e n ∞ ≡ max {| u ( jh ) − u j | , j = 0 , · · · , 2 n } (12) 15

  16. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (viii) • Orders of convergence for the previous test case : Mixed scheme P 1 Q 0 L 2 L ∞ g 1 ( t ) ∞ ∞ g 2 ( t ) 1.0000 1.3982 1.4850 1.4677 g 3 ( t ) g 4 ( t ) 1.4722 1.4627 1.4613 1.4564 g 5 ( t ) • Satisfying results ? 16

  17. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (ix) • Tests with β = 0 . 5 and nonlinear dynamics Φ ( u , t ) ≡ f ( u ) : √ π , √ u , √ π u 2  f 1 ( u ) = 1 2 f 3 ( u ) = 3 3 , f 2 ( u ) = √ π  2 4  (13) √ π u 3 4 8 f 5 ( t ) = 15 4 , 5 . f 4 ( u ) = 3 √ π u   16 Then the solution of equation (2) is simply • � √ � j , (14) u j ( t ) ≡ t j = 1 , · · · , 5 . as in the five previous test cases. 17

  18. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (x) 1.2 1/2 Solution exacte u 1 (t) = t Schéma de GL à deux points Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 D 1/2 u 1 = π 1/2 /2 0.6 0.4 Solutions exacte et approchées avec 8 points 0.2 0 0 0.2 0.4 0.6 0.8 1 √ Numerical solution of D 1 / 2 u = f 1 ( u ) ; u ( t ) = Figure 6. t. 18

  19. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (xi) 1.2 Solution exacte u 2 (t)= t Schéma de GL à deux points Schéma de GL à trois points Schéma de Msallam 1 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 0.8 D 1/2 u 2 = 2 (u 2 / π ) 1/2 0.6 0.4 0.2 Solutions exacte et approchées avec 8 points 0 0 0.2 0.4 0.6 0.8 1 Numerical solution of D 1 / 2 u = f 2 ( u ) ; u ( t ) = t. Figure 7. 19

  20. Int. Conf. on Numerical Algorithms, Marrakesh, October 1-5, 2001. First numerical tests (xii) 1.4 3/2 Solution exacte u 3 (t)= t Schéma de GL à deux points Schéma de GL à trois points Schéma de Msallam 1.2 Schéma par éléments finis Schéma mixte P 1 Q 0 Schéma mixte P 1 Q 1 1 0.8 D 1/2 u 3 = 3 π 1/2 u 3 2/3 / 4 0.6 0.4 0.2 Solutions exacte et approchées avec 8 points 0 0 0.2 0.4 0.6 0.8 1 √ Numerical solution of D 1 / 2 u = f 3 ( u ) ; u ( t ) = t Figure 8. t. 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend