metal on the oxidation rate of
play

metal on the oxidation rate of the M5 Framatome alloy M. Tupin, R. - PowerPoint PPT Presentation

Effect of ion irradiation of the metal on the oxidation rate of the M5 Framatome alloy M. Tupin, R. Verlet, K. Colas, M. Jublot, G. Baldacchino, CEA Universit Paris Saclay K. Wolski Ecole des Mines de St Etienne I. Idarraga e DF D.


  1. Effect of ion irradiation of the metal on the oxidation rate of the M5 Framatome alloy M. Tupin, R. Verlet, K. Colas, M. Jublot, G. Baldacchino, CEA Université Paris Saclay K. Wolski Ecole des Mines de St Etienne I. Idarraga e DF D. Kaczorowski Framatome M. TUPIN et al. – 19 th International Symposium on 1 Zirconium in the Nuclear Industry

  2. OUTLINE • Issue and Background • Aim of the study • Experimental results • Discussion • Conclusions M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 2

  3. ISSUE AND BACKGROUND * and Zircaloy-4 performance in PWR Comparison of M5 Framatome Reaction of oxidation : Zr + 2 H 2 0 ➔ ZrO 2 + 2 H 2 M5 Framatome : oxidation rate constant up to a high burn-up RXA M5 Framatome [Kaczorowski et al. ASTM STP1543 (2015)]  Working hypothesis : irradiation effect contribution to the « High Burn-Up » good corrosion resistance of the M5 Framatome alloy ? * M5 Framatome is a trademark or a registered trademark of Framatome or its affiliates, in the USA or other countries M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 3

  4. ISSUE AND BACKGROUND Irradiation effect on the corrosion behavior of Zr-Nb type alloy : state of art ➢ neutron irradiation effect on the corrosion rate of the Zr-2.5%Nb alloy in moist air at 300°C ➔ decrease of the corrosion rate after irradiation [Urbanic et al., AIEA (1990)] ➢ neutron irradiation effect on the corrosion rate of a pre-oxidized E110 alloy in PWR conditions at 350°C ➔ slight reduction of the corrosion rate after irradiation [Markelov et al., ASTM STP1597 (2016)] unirradiated 3,5 specimen 3 ➢ ion irradiation effect of the oxide layer on the corrosion Oxide thickness (µm) 2,5 rate of the M5 Framatome alloy in PWR conditions at 360°C 2 ➔ significant decrease of the corrosion rate after irradiation 1,5 irradiated  Focus on the change of the oxidation rate [Tupin et al., ASTM STP1597 (2016)] specimen 1 0,5 after irradiation of M5 Framatome alloy 0 0 20 40 60 80 100 120 140 t (days) M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 4

  5. ISSUE AND BACKGROUND M5 Framatome alloy wt. % Fe Cr Sn Ni Nb O M5 0.005 - - 1.03 0.13 <0.1 bright field dark field Zr(Fe,Nb) 2 SPP [AIEA (1998)] [Doriot et al., ASTM STP1597 (2016)] b -Nb precipitate M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 5

  6. ISSUE AND BACKGROUND Neutron irradiation effect on the microstructure of the M5 Framatome alloy microstructure evolution in PWR [1-4] nanometric β -Nb needles - the nucleation of dislocation loops - growth of the initial b -Nb precipitates (same density) - increase of b -Nb volume fraction (x2) - Nb concentration decrease in the b -Nb particles - radiation – enhanced precipitation of b -Nb needles [S. Doriot et al., ASTM STP1467 (2005)] 1.Doriot et al., ASTM STP1467 (2005) ➔ metal hardening induced by neutron irradiation 2.Doriot et al., ASTM STP1543 (2015) 3.Northwood et al., JNM 79 (1979) 4.M. Griffiths, JNM 159 (1988) M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 6

  7. AIM OF THE STUDY Irradiation effect on the corrosion behavior of Zr-Nb alloy Ions PWR ➢ nuclear damage : - nucleation of dislocation loop H + /350°C - Frenkel pairs - growth the b -Nb precipitates - dislocation loops - increase of b -Nb volume fraction (x2) Zu et al., Philos. Mag 85 (2005) - Nb concentration decrease in the b -Nb + metal hardening particles ? ➢ radiation-induced precipitation of - radiation – enhanced precipitation of b -Nb needles (ten nanometers) nanometric β -Nb needles Aim of the study : reproduce (if possible separatly) each metallurgical change observed in- core using ion irradiation test in order to study their effect on the oxidation rate of M5 Framatome alloy M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 7

  8. EXPERIMENTAL APPROACH - Oxidation : 50 days at 360 ° C, 18.7 MPa in H 2 16 O with Li, B. - Isotopic exposure H 2 18 O / D 2 16 O (20/80%) Oxidation kinetics Sample post-oxidation SRIM 1. weight gain characterization characterization irradiation Simulation 2. isotopic exposure + TEM TEM & XPS SIMS analyses Tecnai Tecnai Ion and energy choice 300 kV 300 kV JANNUS Microscope Microscope - defect distribution Orsay Facilities - nuclear damage 4 6 10 4 5 10 4 4 10 I(cps/s) 4 3 10 4 2 10 4 1 10 M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 8 0 0 0.2 0.4 0.6 0.8 X (µm)

  9. EXPERIMENTAL SRIM SIMULATION Aim of the irradiation test : corrosion monitoring up to 3 µm oxide thickness ➔ metal irradiated depth of around 2 µm (Pillig-Bedworth Ratio = 1.56) 5 PBR = 1.56 H + /300 keV 4 10 18 cm -2 3  (dpa) 2 µm irradiated area 3 µm oxide layer 2 1 0 0 1 2 3 metal depth (µm) Ion dpa Temperature Fluence Flux dose Ion Target (ions/cm²/s) (dpa/s) (°C) (ions/cm²) energy (on the plateau) <a>-Dislocation loops 300 8.10 13 3.9 10 -4 H + 350 °C 10 18 ~0.7 + keV b -Nb-needles particles ? M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 9

  10. EXPERIMENTAL METAL CHARACTERIZATION AFTER IRRADIATION TEST - Oxidation : 50 days at 360 ° C, 18.7 MPa in H 2 16 O with Li, B. - Isotopic exposure H 2 18 O / D 2 16 O (20/80%) Oxidation kinetics Sample post-oxidation SRIM 1. weight gain characterization characterization irradiation Simulation 2. isotopic exposure + TEM TEM & XPS SIMS analyses Tecnai Tecnai Ion and energy choice 300 kV 300 kV JANNUS Microscope Microscope - Defect distribution Orsay and Saclay Facilities - Defect contents 4 6 10 4 5 10 (dpa, Se) 4 4 10 I(cps/s) 4 3 10 4 2 10 4 1 10 M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 10 0 0 0.2 0.4 0.6 0.8 X (µm)

  11. EXPERIMENTAL METAL CHARACTERIZATION AFTER IRRADIATION TEST TEM observations reference material proton irradiated material b -Nb (~50 nm) Particles : - length : 10-100 nm - width : 2-20nm - precipitation of long nanometric particles ➔ b -Nb needles found in neutron irradiated fuel cladding ? M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 11

  12. EXPERIMENTAL METAL CHARACTERIZATION AFTER IRRADIATION TEST TEM observation of proton irradiated material EDX profiles ~8% b -Nb 2 0 0 n m 2 0 0 n m Long niobium-enriched precipitates looking like b -Nb needles M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 12

  13. EXPERIMENTAL OXIDATION KINETICS - Oxidation : 50 days at 360 ° C, 18.7 MPa in H 2 16 O with Li, B. - Isotopic exposure H 2 18 O / D 2 16 O (20/80%) Oxidation kinetics Sample post-oxidation SRIM 1. weight gain characterization characterization irradiation Simulation 2. isotopic exposure + TEM TEM & XPS SIMS analyses Ion and energy choice Tecnai JANNUS Tecnai 300 kV - Defect distribution Orsay and Saclay 300 kV Microscope Facilities Microscope - Defect contents 4 6 10 4 5 10 (dpa, Se) 4 4 10 I(cps/s) 4 3 10 4 2 10 4 1 10 M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 13 0 0 0.2 0.4 0.6 0.8 X (µm)

  14. EXPERIMENTAL OXIDATION KINETICS oxide thickness vs exposure time Fitting with power law 2.5 T=360°C y = m1*m0^0.5 e ox = 0.32 x t 0.5 P=19MPa Value Error m1 0.32051 0.0057049 B/Li : 1000/2 wt ppm 2 Chisq 0.025548 NA R 0.99613 NA oxide thickness (µm) 1.5 𝑙 𝑞_𝑗𝑠𝑠 = 0.78 𝑙 𝑞_𝑣𝑜𝑗𝑠𝑠 1 y = m1*m0^0.5 0.5 Value Error e ox = 0.25 x t 0.5 m1 0.24574 0.00027292 Chisq 4.767e-6 NA R 1 NA 0 0 10 20 30 40 50 60 time (days) ➔ strong effet of the proton irradiation on the oxidation rate of the M5 Framatome alloy : 1. around 25 % reduction of the corrosion rate up to 20 days : R= 0.78 M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 14

  15. EXPERIMENTAL OXIDATION KINETICS oxide thickness vs exposure time Fitting with power law 𝑠 𝑗𝑠𝑠 ~0.05 samples for SIMS analyses 𝑠 𝑣𝑜𝑗𝑠𝑠 ➔ strong effet of the proton irradiation on the oxidation rate of the M5 Framatome alloy : 1. around 25 % reduction of the corrosion rate up to 20 days : R= 0.78 2. around 95 % reduction of the corrosion rate beyond 20 days : R= 0.05 M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 15

  16. EXPERIMENTAL OXYGEN DIFFUSION PROFILE 18 O SIMS profiles after 24 hours of isotopic exposure in 18 O enriched primary water 6 3 10 18 O absorbed amount ratio : unirradiated alloy 6 2.5 10 x 18 O SIMS intensity (cs/s)    I dx 18 O 6 2 10 0 R= = proton irradiated x  NI specimen I dx 6 18 1.5 10 O 0 6 1 10 R= 0.75 ➔ close to the parabolic 5 5 10 constant ratio at the beginning of the oxidation 0 0 0.1 0.2 0.3 0.4 0.5 process oxide depth (µm) ➢ decrease of 18 O surface concentration ➢ decrease of the 18 O amount absorbed within the oxide layer after irradiation ➔ consistent with the oxidation kinetics M. TUPIN et al. – 19 th International Symposium on Zirconium in the Nuclear Industry 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend