message macro iiasa
play

MESSAGE-MACRO (IIASA) Volker Krey, Shilpa Rao, Keywan Riahi, - PowerPoint PPT Presentation

MESSAGE-MACRO (IIASA) Volker Krey, Shilpa Rao, Keywan Riahi, Shonali Pachauri September 17, 2009 Tsukuba, Japan Key Design Characteristics Participating Model: MESSAGE-MACRO Model Type: Coupled Systems Engineering and Macroeconomic


  1. MESSAGE-MACRO (IIASA) Volker Krey, Shilpa Rao, Keywan Riahi, Shonali Pachauri September 17, 2009 Tsukuba, Japan

  2. Key Design Characteristics • Participating Model: MESSAGE-MACRO • Model Type: Coupled Systems Engineering and Macroeconomic model • Participating Modelers: Volker Krey, Shilpa Rao, Keywan Riahi • Time Step: 10 years (annual for access modeling) • Time Frame: 2000-2100 • Solution Type: Inter-temporal optimization (cost minimization) • Equilibrium Type: Partial Equilibrium • Underlying Computing Framework: MESSAGE (C, Cplex) and MACRO (GAMS)

  3. Inputs and Outputs • Key inputs – Demographics: Population, Income cohorts (access) – Economic: reference GDP, household budgets (access) – Resources: Conventional & unconventional fossil fuels, renewable potentials (solar, wind, biomass, geothermal) – Technology: full energy chain (extraction all the way to consumer services) • Key outputs – Economic: GDP, prices (fuels, GHG emissions), investments – Energy: technology specific capacity and activity pathways for all sectors – Agriculture: commodity, price and land-use change (linked to BLS/AEZ and Dima models) – Emissions: All GHGs and raditively active substances – Climate: alternative implementations (GHG concentrations, forcings, temperature)

  4. The Reference Energy System The Reference Energy System MESSAGE MESSAGE Energy Conversion Sector oil coal gas agro- Extraction Treatment well mine well forestry sun- bio- oil coal gas Primary Sources light mass CCT power hydrogen refin- synfuel Conversion Technologies plant plant ery plant grid/ grid/ truck grid grid/truck Distribution Technologies on site truck synthetic elect- kero- gas hydrogen Final Energy fuel ricity sene air craft, light bulb, furnace, End-Use Technologies air conditioner, oven, automobile etc. Energy Services

  5. IIASA Modeling Framework IIASA Modeling Framework Scenario Storyline  Economic development Feedbacks Feedbacks  Demographic change  Technological change  Policies Population Economic Projections Projections Regional population & economic projections Downscaling Tools Spatially explicit (and national) projections of economic and demographic growth National, regional & spatially Spatially explicit socio-economic explicit socio-economic drivers drivers DIMA AEZ-BLS Consistency of land-cover changes Forest Agricultural (spatially explicit maps of Management Modeling agricultural, urban, and forest land) Model Framework MESSAGE-MACRO Carbon and Agricultural bioenergy Systems Engineering / Macro-Economic biomass price potentials and costs Modeling Framework (all GHGs and all Potential and costs of sectors) Drivers for land-use related forest bioenergy and non-CO2 emissions Endogenous Climate Model sinks

  6. Regional Scope & Other Detail • Regional Details: – Regional Scope: Global – Number of Sub-Regions: 11 – Asian Regions: Pacific OECD (PAO), Centrally Planned Asia (CPA), South Asia (SAS), Pacific Asia (PAS) NAM PAO OECD WEU EEU REFS FSU MEA ALM AFR LAM SAS PAS ASIA CPA 9 SAS South Asia 1 NAM North America 5 FSU Former Soviet Union 10 PAS Other Pacific Asia 2 LAM Latin America & The Caribbean 6 MEA Middle East & North Africa 11 PAO Pacific OECD 3 WEU Western Europe 7 AFR Sub-Saharan Africa 4 EEU Central & Eastern Europe 8 CPA Centrally Planned Asia & China

  7. Spatial modeling of Land-use Dynamic GDP maps (to 2100) Dynamic population density (to 2100) “Top-down” Downscaling Development of bioenergy potentials “bottom-up” assessment Consistency of land-price, urban areas, net primary productivity, biomass potentials (spatially explicit)

  8. A2 Baseline: A2 Baseline: Population, Urbanization, GDP Population, Urbanization, GDP 80.0 3500 1.0 CPA CPA 0.9 PAO PAO 70.0 3000 PAS PAS 0.8 SAS SAS 60.0 2500 0.7 Trillion $2005 50.0 0.6 Million 2000 Share 0.5 40.0 1500 0.4 30.0 0.3 1000 20.0 CPA 0.2 PAO 500 10.0 PAS 0.1 SAS 0.0 0.0 0 2000 2000 2000 2005 2005 2005 2010 2010 2010 2020 2020 2020 2030 2030 2030 2040 2040 2040 2050 2050 2050 2060 2060 2060 2070 2070 2070 2080 2080 2080 2090 2090 2090 2100 2100 2100

  9. A2 Baseline: Primary Energy A2 Baseline: Primary Energy 390 250 Renewables Biomass 340 Nuclear 200 Gas 290 Oil Primary Energy [EJ] Primary Energy [EJ] CPA SAS CPA SAS 240 Coal 150 Synfuel Trade 190 100 140 90 50 40 0 -10 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 100 40 90 35 80 30 70 Primary Energy [EJ] Primary Energy [EJ] 25 60 PAO PAS PAO PAS 20 50 15 40 10 30 5 20 0 10 0 -5 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

  10. A2 Baseline: GHG Emissions A2 Baseline: GHG Emissions 10000 5000 9000 4500 8000 4000 7000 3500 CO2-equiv. [MtC] CPA SAS CPA SAS CO2-equiv. [MtC] 6000 3000 5000 2500 4000 2000 3000 1500 2000 1000 1000 500 0 0 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 1600 800 1400 700 1200 600 1000 CO2-equiv. [MtC] CO2-equiv. [MtC] 500 800 PAO PAS PAO PAS 600 400 400 300 200 200 0 100 -200 -400 0 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

  11. A2 550 ppmv ppmv: : Sectoral Sectoral Mitigation Mitigation A2 550 10000 5000 Electricity & Heat 9000 4500 Other Conversion Industry 8000 4000 Residential/Commercial 7000 3500 Transport CO2-equiv. [MtC] CO2-equiv. [MtC] Other (LULUCF, F-gases, etc) 6000 3000 5000 2500 4000 2000 3000 1500 2000 1000 1000 500 0 0 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 1600 800 1400 700 1200 600 1000 CO2-equiv. [MtC] CO2-equiv. [MtC] 500 800 600 400 400 300 200 200 0 100 -200 -400 0 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

  12. The Nature of the Energy Transition will The Nature of the Energy Transition will Depend on the Ranking of (Subjective) Depend on the Ranking of (Subjective) Policy Priorities Policy Priorities More preferable, but more difficult Reservation Aspiration Level Level Mid-term GHG/pollutant +80% -80% emissions levels (2050) Environment Long-term climate target 5% 70% (prob. of 2C) 100% 5% Regional energy trade (share of PE) Energy Security Diversity of trade (index) 0 1 X trill Y trill Economy Energy system cost 12

  13. System Costs vs. Probability of Staying Below 2 degree (alternative security targets) 5% Max Import Share 14% 10% Max Import Share Relative Change from Baseline (2000 ‐ 2050) 15% Max Import Share 12% 20% Max Import Share Total Discounted System Costs 25% Max Import Share 10% 30% Max Import Share No Max Import Share 8% 6% 4% 2% 0% 0% 10% 20% 30% 40% 50% 60% Probability of Staying Below 2 degrees Centigrade More than 600 scenarios!

  14. System Costs vs. Probability of Staying Below 2 degree (alternative security targets) 5% Max Import Share 14% 10% Max Import Share Relative Change from Baseline (2000 ‐ 2050) 15% Max Import Share 12% 20% Max Import Share Total Discounted System Costs 25% Max Import Share 10% 30% Max Import Share No Max Import Share 8% 6% Stringency of the 4% climate target 2% 0% 0% 10% 20% 30% 40% 50% 60% Probability of Staying Below 2 degrees Centigrade More than 600 scenarios!

  15. System Costs vs. Probability of Staying Below 2 degree (alternative security targets) 5% Max Import Share 14% 10% Max Import Share Relative Change from Baseline (2000 ‐ 2050) 15% Max Import Share 12% 20% Max Import Share Total Discounted System Costs Effect of the 25% Max Import Share 10% 30% Max Import Share trade constraint No Max Import Share 8% 6% 4% 2% 0% 0% 10% 20% 30% 40% 50% 60% Probability of Staying Below 2 degrees Centigrade More than 600 scenarios!

  16. System Costs vs. Probability of Staying Below 2 degree (alternative security targets) 5% Max Import Share 14% 10% Max Import Share Relative Change from Baseline (2000 ‐ 2050) 15% Max Import Share 12% 20% Max Import Share Total Discounted System Costs 25% Max Import Share 10% 30% Max Import Share No Max Import Share 8% 6% high security 4% better climate 2% 0% 0% 10% 20% 30% 40% 50% 60% Probability of Staying Below 2 degrees Centigrade More than 600 scenarios!

  17. Income vs. energy consumption in India (MJ/cap/a, 2000) Urban: Rural: 6000.00 6000.00 5000.00 5000.00 Most polluting and least efficient 4000.00 4000.00 Electricity Coal LPG 3000.00 3000.00 Kerosene Dung 2000.00 2000.00 Firew ood 1000.00 1000.00 0.00 0.00 0-20 % 20-40 % 40-60 % 60-80 % 80-100 % 0-20 % 20-40 % 40-60 % 60-80 % 80-100 % Income quintiles Income quintiles

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend