max planck institut f r plasmaphysik max planck institut
play

Max-Planck-Institut fr Plasmaphysik Max-Planck-Institut fr - PowerPoint PPT Presentation

Max-Planck-Institut fr Plasmaphysik Max-Planck-Institut fr Plasmaphysik Fundamental Data of Diatomic Molecules Relevant for Fusion Ursel Fantz and Dirk Wnderlich Molecules in the plasma edge Recycling Be Beryllium Beryllium H 2 , D


  1. Max-Planck-Institut für Plasmaphysik Max-Planck-Institut für Plasmaphysik Fundamental Data of Diatomic Molecules Relevant for Fusion Ursel Fantz and Dirk Wünderlich Molecules in the plasma edge � Recycling Be Beryllium Beryllium H 2 , D 2 , T 2 , HD, HT, DT � Plasma wall interaction: CH, CD, CT, C 2 BeH, BeD, BeT W BH, BD, BT C � Vibrationally resolved data FCF, A ik , σ , X, CR and dissociation model CRP on ‘Atomic and Molecular Data for Plasma Modelling’, IAEA, Vienna 17-19 November 2008

  2. Max-Planck-Institut Max-Planck-Institut Tra nsitions of Di atomic Mo lecules: TraDiMo für Pl für Plasmaphy asmaphysik Based on Schrödinger equation with Born-Oppenheimer approximation Compilation of data Compilation of data Vibrational energies TraDiMo TraDiMo Potential curves Franck-Condon factors bound-bound bound-bound + Dipole transition moment and bound-free Transition probabilities and bound-free transitions transitions Effective mass Isotope relations Basic molecular data Basic molecular data vibrational resolution H 2 , D 2 , T 2 U. Fantz, D. Wünderlich Already available HD, DT INDC(NDS)-457 (2004) HT presented at the 1 st RCM, September 2005 Ursel Fantz, p. 2 CRP Meeting, 17-19 November 2008

  3. Max-Planck-Institut Max-Planck-Institut TraDiMo for molecular hydrogen für Pl für Plasmaphy asmaphysik 20 Energy level diagram and potential curves plotted n=1,2,3, data up to n=4 plotted n=1,2,3, data up to n=4 data compilation data compilation H + 18 2 polynomial fits polynomial fits E [eV] d 3 Π u H(1s)+H(3l) + H 2 D 1 Π u 16 16 g 3 Σ + h 3 Σ + HH 1 Σ g + I 1 Π g i 3 Π g g g J 1 Δ g j 3 Δ g H(1s)+H(2l) 14 14 n=3 e 3 Σ + C 1 Π u u Potential energy [eV] B' 1 Σ + E,F C u EF 1 Σ + g 12 a c 12 GK 1 Σ + B 1 Σ + B g u n=2 double well a 3 Σ + g c 3 Π u 10 10 v=0 metastable 8 8 b repulsive 6 6 b 3 Σ + u v=14 H(1s)+H(1s) 4 4 · · · 2 2 v=3 Singlet v=2 X 1 Σ + v=1 g Triplet 0 0 v=0 0 1 2 3 4 5 H 2 Singlet Triplet system Internuclear distance [Å] Ursel Fantz, p. 3 CRP Meeting, 17-19 November 2008

  4. Max-Planck-Institut Max-Planck-Institut TraDiMo for molecular hydrogen für Pl für Plasmaphy asmaphysik Example: transition probabilities: d 3 Π u → a 3 Σ g + Fulcher band v‘‘ 18.0 q 0 1 2 3 4 v‘ 0 2.41E+07 1.66E+06 9.27E+03 7.75E-02 5.62E-02 1x10 -29 1 1.53E+06 2.07E+07 3.26E+06 2.97E+04 2.82E+00 d 3 Π u 2 1.07E+05 2.84E+06 1.74E+07 4.80E+06 6.23E+04 Potential energy [eV] 3 8.40E+03 3.19E+05 3.89E+06 1.43E+07 6.24E+06 16.0 0 4 5.87E+02 3.64E+04 6.22E+05 4.64E+06 1.15E+07 M el ... M el [Cm] v'=3 -1x10 -29 a 3 Σ + g 14.0 2.5x10 7 -2x10 -29 v''=3 2.0x10 7 -3x10 -29 12.0 1.5x10 7 ] 0 1 2 3 4 1 - [s Internuclear distance [Å] 1.0x10 7 ' ' v ' v 1 A 5.0x10 6 0 8 Ψ *M el Ψ ' -1 6 0.0 0 1 2 3 4 5 6 7 8 9 4 -2 ) 2 3 Π u -3 v'=3 → v''=3 v''(a d 0 3 Σ ( + ' -4 v ) g 0 1 2 Ursel Fantz, p. 4 CRP Meeting, 17-19 November 2008

  5. Max-Planck-Institut Max-Planck-Institut + (v) TraDiMo for molecular hydrogen coupled to H 2 für Pl für Plasmaphy asmaphysik Franck-Condon factors for H 2 *(v) - H 2 + (v) transitions: data up to n=4 v + + + Example: B 1 Σ u → H 2 (X 2 Σ g ) q 0 1 2 3 4 v‘ 0 4.76E-01 3.17E-01 1.36E-01 4.82E-02 1.54E-02 1 3.75E-01 2.73E-02 2.07E-01 1.96E-01 1.12E-01 20.0 2 1.26E-01 3.32E-01 2.93E-02 5.59E-02 1.51E-01 3 2.10E-02 2.53E-01 1.75E-01 1.15E-01 6.82E-04 4 1.56E-03 6.44E-02 3.22E-01 5.91E-02 1.49E-01 ... 18.0 Potential energy [eV] + 2 Σ + H 2 (X g ) 0.6 16.0 0.4 14.0 1 Σ + FCF B u 0.2 12.0 8 0 2 4 6 8 ) 6 0.0 ) 2 Σ + Internuclear distance [Å] 0 1 2 3 4 5 6 7 8 9 4 g X 2 ( + v (B H 2 1 Σ 0 + ( ) ' v u Ursel Fantz, p. 5 CRP Meeting, 17-19 November 2008

  6. Max-Planck-Institut Max-Planck-Institut + (v) TraDiMo for molecular hydrogen coupled to H 2 für Plasmaphy für Pl asmaphysik Franck-Condon factors for H 2 *(v) - H 2 + (v) transitions: H 2 , D 2 , T 2 , HD, DT,HT 0.6 0.6 H 2 H 2 D 2 H 2 D 2 D 2 + + + B 1 Σ u → H 2 (X 2 Σ g ) 0.4 0.4 F FCF Isotope shifts Isotope shifts C F 0.2 0.2 8 8 g )) g )) 6 2 (X 2 Σ + 6 2 (X 2 Σ + 0.0 0.0 0 1 2 3 4 5 6 7 8 9 4 0 1 2 3 4 5 6 7 8 9 4 2 v' (D + 2 v' (H + v v 0 ( B 1 0.6 ( B 1 Σ + 0 Σ + T 2 T 2 ) T 2 ) u u 0.4 FCF 0.2 8 )) 6 + 0.0 Σ g 4 0 1 2 3 4 5 6 7 8 9 2 (X 2 + v' (T 2 v 0 ( B 1 Σ + ) u Ursel Fantz, p. 6 CRP Meeting, 17-19 November 2008

  7. Max-Planck-Institut Max-Planck-Institut TraDiMo for CH für Pl für Plasmaphy asmaphysik Potential curves and transition probabilities 10 8 10 ] -1 s CH 6 CH CH 6 0 1 C 2 Σ + -X 2 Π C 2 Σ + -X 2 Π 4 H Hettema and D R Yarkony, J. Chem. Phys 100, 1994, 8991 [ vv' G C Lie, J Hinze and B Liu, J. Chem. Phys 59, 1973, 1872 8 A 2 8 6 0 4 0 1 2 3 4 5 6 7 8 9 ) + 4 Potential energy [eV] Σ 2 2 C v (X 2 Π ) ( 6 0 ' A vv ’ [10 6 s -1 ] 3 v C 2 Σ + A vv' [10 6 s -1 ] 2 A 2 Δ B 2 Σ - -X 2 Π B 2 Σ - -X 2 Π 4 1 B 2 Σ − 8 6 0 0 1 2 3 4 5 6 7 8 9 ) 2.0 4 2 Σ - CH 2 2 B X 2 Π ( v (X 2 Π ) 0 ' v 1.5 ] -1 s 6 0 1.0 0 1 A 2 Δ -X 2 Π A 2 Δ -X 2 Π [ 0 1 2 3 4 5 vv' 0.5 A Intenuclear distance [Å] Gerö band 8 6 0.0 v' (A 2 Δ ) 0 1 2 3 4 5 6 7 8 9 4 2 v (X 2 Π ) 0 Ursel Fantz, p. 7 CRP Meeting, 17-19 November 2008

  8. Max-Planck-Institut Max-Planck-Institut TraDiMo for C 2 für Pl für Plasmaphy asmaphysik Mulliken D 1 Σ u + - X 1 Σ g D 1 Σ u + - X 1 Σ g + + Potential curves and Einstein coefficients band 70 60 50 C 2 ] 14 s -1 40 0 6 1 30 D 1 Σ + [ 12 A ik u 20 10 6 Potential energy [eV] 10 0 4 u ) Σ + 0 1 2 d 3 Π g v(D 1 2 3 4 v(X 1 Σ + 5 0 6 8 g ) 7 X 1 Σ + g a 3 Π u 7 6 d 3 Π g - a 3 Π u d 3 Π g - a 3 Π u metastable 6 5 Swan band ] 4 ground state s -1 4 Energy gap 0 6 3 1 a 3 Π u - X 1 Σ + 2 [ g A ik 2 0.0887 eV 1 6 0 4 ) 0 1 2 3 4 0 1 2 3 Π g 2 v'(d 3 Internuclear distance [Å] 4 5 0 v ( a 3 6 Π 7 u ) Ursel Fantz, p. 8 CRP Meeting, 17-19 November 2008

  9. Max-Planck-Institut Max-Planck-Institut TraDiMo for BH für Pl für Plasmaphy asmaphysik Potential curves and Franck Condon factors 1.0 B 1 Σ + - X 1 Σ + B 1 Σ + - X 1 Σ + X 1 Σ + → B 1 Σ + 10 BH BH BH W-T Luh and W C Stwalley, J. Molec. Spectr. 102, 1983, 212 FCF 0.5 B 1 Σ + 8 Potential energy [eV] 8 6 6 0.0 0 1 2 4 ) + 1 Σ 3 4 2 B 5 ( v 6 v ( X 1 7 Σ + 0 8 ) A 1 Π 4 1.0 A 1 Π - X 1 Σ + X 1 Σ + → A 1 Π A 1 Π - X 1 Σ + 2 X 1 Σ + FCF 0.5 0 0 1 2 3 4 5 8 6 Intenuclear distance [Å] 0.0 0 1 2 4 ) 1 Π 3 A 4 2 5 ( 6 v (X 1 Σ + ) v 7 0 8 Ursel Fantz, p. 9 CRP Meeting, 17-19 November 2008

  10. Max-Planck-Institut Max-Planck-Institut TraDiMo for BeH für Pl für Plasmaphy asmaphysik 100000 2.0 CH CH J. Pitarch-Ruiz et al, CH BeH BeH J. Chem. Phys. 129, 2008, 054310 90000 A 2 Δ - -X 2 Π A 2 Δ - -X 2 Π 1.5 5 2 Π 4 2 Π 1 2 Δ ] 1 2 Σ - s -1 80000 2 2 Δ 0 6 1.0 1 [ A vv' 70000 5 2 Σ + Potential energy [cm -1 ] 0.5 3 2 Π 6 2 Σ + 4 2 Σ + 8 6 60000 Be( 1 P)+H( 2 S) 0.0 2 2 Π ) Δ 0 1 2 3 4 5 6 7 8 9 A 2 4 3 2 Σ + ( 2 ' v v (X 2 Π ) 50000 0 1 4 Σ + 40000 1 4 Π Be( 3 P)+H( 2 S) 10 BeH BeH 2 2 Σ + BeH 30000 8 A 2 Π - X 2 Σ + A 2 Π - X 2 Σ + A 2 Π A v'v'' [10 6 s -1 ] 6 20000 Be( 1 S)+H( 2 S) 4 10000 X 2 Σ + 2 8 0 6 0 0 1 2 3 4 5 6 7 8 ) 4 Π 2 1 2 3 4 5 A 2 ( v ' ' ' v Internuclear distance [Å] ( X 2 Σ + ) 0 9 Ursel Fantz, p. 10 CRP Meeting, 17-19 November 2008

  11. Max-Planck-Institut Max-Planck-Institut TraDiMo for BeH für Pl für Plasmaphy asmaphysik Einstein coefficients: A 2 Π - X 2 Σ + Isotope shifts Isotope shifts 10 BeD BeD G. Duxbury et al., EFDA–JET–CP(04)03-54 BeD 8 A v'v'' [10 6 s -1 ] 6 4 2 8 6 0 0 1 2 3 4 5 6 7 8 v' (A 2 Π ) 4 2 v'' (X 2 0 + ) Σ 9 10 BeT BeT BeT 8 A v'v'' [10 6 s -1 ] 6 4 2 8 6 0 0 1 2 3 4 5 6 7 8 v' (A 2 Π ) 4 2 v ' ' ( X 2 Σ + 0 ) 9 Ursel Fantz, p. 11 CRP Meeting, 17-19 November 2008

  12. Max-Planck-Institut Max-Planck-Institut Yacora: a flexible code for calculating particle densities für Pl für Plasmaphy asmaphysik Self-consistent solution of coupled systems of linear and non-linear differential equations Collisional radiative modelling Population densities of excited states Collisional radiative modelling + Dissociation modelling Particle densities of radicals Dissociation modelling Example: molecular hydrogen = 10 0 T e =4 eV Coupled system Particle and Coupled system n e =10 17 m -3 v=6 population Relative population n i /n 0 10 -2 v=5 densities v=4 Flexible code 10 -4 v=3 v=8 v=2 � Easy to extend for new processes c 3 Π u v=0 v=1 � Simple change of input data 10 -6 metastable v=14 B 1 Σ + � Based on cross sections (EEDF) u 10 -8 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 Electron collisions Electron collisions Temporal development [s] + heavy particle collisions + radiation + heavy particle collisions + radiation Ursel Fantz, p. 12 CRP Meeting, 17-19 November 2008

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend