thermomagnetic properties of the strongly correlated
play

Thermomagnetic properties of the strongly correlated semimetal - PowerPoint PPT Presentation

MAX-PLANCK-INSTITUT FR CHEMISCHE PHYSIK FESTER STOFFE Thermomagnetic properties of the strongly correlated semimetal CeNiSn Niels Oeschler Max Planck Institute for Chemical Physics of Solids, Dresden, Germany MAX-PLANCK-INSTITUT FR


  1. MAX-PLANCK-INSTITUT FÜR CHEMISCHE PHYSIK FESTER STOFFE Thermomagnetic properties of the strongly correlated semimetal CeNiSn Niels Oeschler Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

  2. MAX-PLANCK-INSTITUT FÜR CHEMISCHE PHYSIK FESTER STOFFE Acknowledgements: Measurements: U. Köhler, MPI CPfS, Dresden, Germany P. Sun, MPI CPfS, Dresden, Germany S. Paschen, Vienna University of Technology, Austria F. Steglich, MPI CPfS, Dresden, Germany Samples: T. Takabatake, Hiroshima University, Japan

  3. Outline Introduction Thermoel. and thermomagn. effects Exp. setup Correlated semimetal CeNiSn Results Resistivity and Hall effect Thermopower Nernst effect and Righi-Leduc effect Discussion Field-dependent thermopower Nernst effect Summary

  4. Introduction Thermoel. and thermomagn. Effects z y Charge transport: J = σ E - σ S Δ T B Heat transport: J Q = σ STE - κΔ T heater x Thermal conductivity: κ = J Q / Δ T x J Q Δ T x U x Thermopower: S = -U x / Δ T x bath

  5. Introduction Thermoel. and thermomagn. Effects z y Charge transport: J = σ E - σ S Δ T B Heat transport: J Q = σ STE - κΔ T heater x Thermal conductivity: κ = J Q / Δ T x J Q Thermopower: S = -U x / Δ T x Nernst effect: ν = -U y / Δ T x B bath Righi-Leduc effect: L = - κ y /B Δ T y / Δ T x U y Δ T y

  6. Introduction Thermomagn. Effects: Ettingshausen cooling L c source/hot B Δ T B j j L h sink/cold Thermomagn. figure of merit Z mag T infinite stage Ettingshausen device α ⎛ − ⎞ σ υ 2 2 ( ) L Z T B T ⎜ ⎟ Δ = = c 1 Δ = mag cold T T ⎜ ⎟ Z T T max hot mag κ ⎝ ⎠ max L 2 h

  7. Kondo Insulator E E (a) (b) (c) (d) unperturbed conduction band unperturbed 4 f band E F E F hybridized bands 0 2 π /a 0 2 π /a k N ( E ) k N ( E ) Heavy fermion metals Kondo insulator • ρ ~ -ln T at T ≈ T K • ρ ~ -ln T at T ≈ T K • enhanced DOS at E F below ~ T K • gap below ~ T g � metal-like behavior at low T � insulating behavior at low T

  8. Introduction Experimental Setup: 4 He cryostat horizontal 7T magnet optimized for small samples with low κ Δ T: chromel-AuFe thermocouples U: copper wires, nanovoltmeter

  9. CeNiSn Ce samples Ni orthorhombic crystal structure Sn chains of Cerium ions along a c easy a axis Czochralski method annealed by SSE a b energy scales crystal field levels: k B Δ CEF ≈ 230K, 460K Kondo temp.: T K ≈ 56 K pseudogap Δ / k B ≈ 10 K below T ≈ 10 K c no ordering down to 25 mK b a

  10. CeNiSn gap structure pseudogap opens around 10K d I /d V residual states at E F metallic ρ , large Sommerfeld coeff. V (mV) T. Ekino et al., Phys. Rev. Lett. 75 , 4262 (1995) gap suppression • magnetic fields ~10 T // a • pressure ~ 2 GPa • substitution (Ce/La and Ni/Cu,Co) ~ 10 % K. Izawa et al., J. Phys. Soc. Jpn. 65 , 3119 (1996)

  11. CeNiSn - Kondo Insulator? sensitive dependence on sample purity ( ρ , MR , R H ) residual DOS near E F (NMR, c P , ρ , κ ) ⇒ CeNiSn – Kondo semimetal K. Izawa et al., J. Phys. Soc. Jpn. 65 , 3119 (1996) H. Ikeda and K. Miyake, J. Phys. Soc. Jpn. 65 , 1769 (1996) G. Nakamoto et al., J. Phys. Soc. Jpn. 64 (12), 4834 (1995)

  12. Experimental Single crystals (#5) - Czochralski + SSE - best available samples - Orientation: Laue, χ , ρ ( a / c ) - ca. 4 x 4 x 0.8 mm³ G. Nakamoto et al., J. Phys. Soc. Jpn. 64 (12), 4834 (1995) - Measurements: q // b ; B // a , c 200 CeNiSn No.3 Measurements: j // b, B // a 150 ρ ( μΩ cm) • Thermal conductivity 0 T 100 1 T • Thermopower at +B and –B 2 T 50 4 T • Nernst effect 7 T 0 1.5 5 10 50 • Thermal Hall effect T (K)

  13. Results: Thermopower CeNiSn #4 CeNiSn #5 40 B = 0 T q //b 20 S (µV/K) 0 -20 G. Nakamoto et al., Physica B 306 & 307 , 840 (1995) sample No 1 sample No 3 CeNiSn type unknown -40 1.5 5 10 50 100 T (K) 60 S (µV/K) 40 • Kondo system with CEF splitting 20 • largest negative S ever observed b-axis 0 • very precise orientation ! 0 10 20 30 40 T (K) J. Sakurai et al., Physica B 306 & 307 , 834 (1995)

  14. Field-dep. Thermopower 40 literature: CeNiSn #5, No. 3 • strong sample q //b, B //a 20 dependence at low T • no comparable results 0 S (µV/K) in field 0 T -20 1 T 2 T 4 T -40 7 T 1.5 2 3 4 5 6 7 89 10 20 30 40 T (K) B // a: - enhanced values of | S | - shift of the minimum to lower T B // c: - similar, but less pronounced

  15. Nernst effect q // b, B // a B // c 0 0 1 T 5.5 T 4 T 0.5 T -20 -20 7 T 2 T 1 T 7 T 3 T 2 T -40 -40 0 0 N (µV/K) N (µV/K) -60 -60 -5 -5 ν (µV/KT) ν (µV/KT) -10 -80 -80 -10 -15 -100 -100 -15 -20 2 4 6 8 10 2 4 6 8 10 T (K) -120 -120 T (K) 1.5 5 10 50 1.5 5 10 50 T (K) T (K) large values of N below 10 K (opening of the gap) • scaling for B // a (easy axis!) • shift of minimum for B // c

  16. Discussion: Thermopower variation due to 10 - sample dependence 0 -10 - misorientation U long / Δ T -20 - non-negligible Nernst contribution -30 + 2 T - 2 T -40 0 2 4 6 8 10 T (K)

  17. Discussion: Thermopower variation due to 10 - sample dependence 0 -10 - misorientation U long / Δ T -20 - non-negligible Nernst contribution -30 + 2 T - 2 T -40 0 2 4 6 8 10 T (K) 0 -10 U long / Δ T -20 -30 N (2T) ( U + - U - )/(2 Δ T ) -40 N (2T) (U + -U - )/2 Δ T 0 2 4 6 8 10 T (K)

  18. Discussion: Thermopower variation due to 10 - sample dependence 0 -10 - misorientation U long / Δ T -20 - non-negligible Nernst contribution -30 + 2 T - 2 T -40 0 2 4 6 8 10 T (K) 0 -10 U long / Δ T -20 7 deg -30 N (2T) ( U + - U - )/(2 Δ T ) -40 N (2T) (U + -U - )/2 Δ T 0 2 4 6 8 10 T (K)

  19. Discussion: Thermopower variation due to 10 - sample dependence 0 -10 - misorientation U long / Δ T -20 - non-negligible Nernst contribution -30 + 2 T - 2 T -40 0 2 4 6 8 10 T (K) � first systematic study of 0 S ( T , B ) including: -10 • best available samples U long / Δ T -20 7 deg • precise orientation -30 N (2T) ( U + - U - )/(2 Δ T ) • correction for the Nernst signal -40 N (2T) (U + -U - )/2 Δ T 0 2 4 6 8 10 T (K)

  20. Field-dep. Thermopower 40 literature: CeNiSn #5, No. 3 • strong sample q //b, B //a 20 dependence at low T • no comparable results 0 S (µV/K) in field 0 T -20 1 T 2 T 4 T -40 7 T 1.5 2 3 4 5 6 7 89 10 20 30 40 T (K) B // a: - enhanced values of | S | - shift of the minimum to lower T B // c: - similar, but less pronounced

  21. Discussion: Thermopower position of the minimum 3.5 3.0 T min (K) 2.5 2.0 B // a B // c 1.5 0 2 4 6 8 B (T) - effect larger for B // a

  22. Discussion: Thermopower position of the minimum 3.5 3.0 T min (K) 2.5 2.0 B // a B // c 1.5 0 2 4 6 8 B (T) - effect larger for B // a - extrapolation // a: B c = 14 T (MR: 18 T) � shift ~ closing of the gap

  23. Discussion: Thermopower position of the minimum 18 3.5 16 3.0 14 Δ E (meV) T min (K) 2.5 12 Δ E 2.0 10 B // a B // c 8 1.5 0 2 4 6 8 B (T) - effect larger for B // a - extrapolation // a: B c = 14 T (MR: 18 T) � shift ~ closing of the gap ( Δ E from tunneling spectroscopy) T. Ekino et al., Physica B 230-232 , 635 (1997)

  24. Discussion: Thermopower position of the minimum value at the minimum -25 18 3.5 -30 16 3.0 -35 14 S min (µV/K) Δ E (meV) T min (K) -40 2.5 12 Δ E -45 B // a 2.0 10 B // a B // c B // c -50 8 1.5 0 2 4 6 8 0 2 4 6 8 B (T) B (T) - effect larger for B // a - effect larger for B // a - extrapolation // a: B c = 14 T - change of the DOS near E F due to Zeeman splitting ( c P ) (MR: 18 T) � shift ~ closing of the gap - similar results for S ( T ) at low T ( Δ E from tunneling spectroscopy) K. Izawa et al., J. Phys. Soc. Jpn. 65 , 3119 (1996) T. Ekino et al., Physica B 230-232 , 635 (1997) S. Paschen et al., Phys. Rev. B 62 , 14912 (2000)

  25. Discussion: Thermopower V-shaped DOS in field increasing B ∂ ln N ∝ S ∂ ε similar analysis for C P ( T,B ) E F (enhanced γ value in field) K. Izawa et al., J. Phys. Soc. Jpn. 65 , 3119 (1996)

  26. Results: Nernst effect q // b, B // a B // c 0 0 1 T 5.5 T 4 T 0.5 T -20 -20 7 T 2 T 1 T 7 T 3 T 2 T -40 -40 0 0 N (µV/K) N (µV/K) -60 -60 -5 -5 ν (µV/KT) ν (µV/KT) -10 -80 -80 -10 -15 -100 -100 -15 -20 2 4 6 8 10 2 4 6 8 10 T (K) -120 -120 T (K) 1.5 5 10 50 1.5 5 10 50 T (K) T (K) large values of N below 10 K (opening of the gap) • scaling for B // a (easy axis!) • shift of minimum for B // c → open question: weak sensitivity to magnetic fields // a

  27. Discussion: Nernst effect Boltzmann approximation: Nernst effect: π ∂ τ 2 2 ν a = ν n - ε yy / κ yy L xy k T = ν n n B N ∂ ε 3 * m ν n : normal Nernst coeff. E F ν a : adiabatic Nernst coeff. σ Θ H = yx with Hall angle tan due to transverse temp. gradient σ xx ≈ π Θ 2 2 tan For CeNiSn, Δ T y ≈ 0, L xy ≈ 0 k T n ν n B H N 3 Be E (below resolution limit) F → ν a = ν n Large Nernst coefficient: • Low charge carrier concentration • Small Fermi energy

  28. Discussion: Nernst effect How to obtain large Nernst coefficients? N Behnia et al., Phys. Rev. Lett. 98 , 076603 (2007)

  29. Discussion: Nernst effect How to obtain large Nernst coefficients? Bi normal semimetal N Behnia et al., Phys. Rev. Lett. 98 , 076603 (2007)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend