dynamical properties of strongly correlated electron
play

Dynamical properties of strongly correlated electron systems - PowerPoint PPT Presentation

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Tokyo University of Science Shigetoshi Sota AICS, RIKEN Outline Density-matrix renormalization group


  1. Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama Tokyo University of Science Shigetoshi Sota AICS, RIKEN

  2. Outline Density-matrix renormalization group ( DMRG) ► DMRG ► Dynamical DMRG ► Extension to two dimensional systems Recent results obtained by DDMRG ► Spin excitations in 1D quantum spin systems ► Optical excitations in 1D Mott insulator coupled to phonon ・ linear absorption ・ Third-harmonic generation (THG) - H. Matsuzaki, H. Nishioka, H. Uemura, A. Sawa, S. Sota, T. Tohyama, and H. Okamoto, Phys. Rev. B 91 , 081114(R) (2015) - S. Sota, T. Tohyama, and S. Yunoki, J. Phys. Soc. Jpn. 84 , 054403 (2015) ► Spin and charge excitations in square t-t’-U Hubbard model - T. Tohyama, K. Tsutsui, S. Sota, and S. Yunoki, Phys. Rev. B 92 , 014515 (2015)

  3. Dynamical properties in strongly correlated electron systems (SCES) External field: Quantum beam: SPring-8, J-PARC photon, neutron Pump-probe spectroscopy high-temperature superconductors, spin charge quantum spins, Mott insulators, … SCES orbital lattice ・ constructing lattice model with correlation ・ numerical techniques to calculate dynamics response to external field : excitation dynamics equibrium/ nonequibrium

  4. Setting lattice models e.g. Hubbard model i site ∑ ∑ + = − + σ H t c c U n n spin σ + δ σ ↑ ↓ i , i , i , i , δ σ i , , i Parameters: from first-principles calculations, experiments, etc Dynamical correlation functions e.g. current-current correlation: optical absorption 1 1 ∑ χ ω = − = − − † ( ) Im 0 j j 0 j it H c . .) ( c c + σ σ π i 1, i , ω + − − γ H i σ E i , 0

  5. Density-matrix renormalization group ( DMRG) [S. R. White, PRL 69 , 2863 (1992)] System | i > Environment | j > Renormalize the states of the Environment into those of the System for each step, by using the density-matrix given by the ground-state wave function. ground-state wave function ∑ ψ = ψ i j ij i , j ・ ・ ・ density matrix of system ・ ・ ・ = ∑ ・ ・ ・ ρ ψ ψ ′ ′ ii ij i j j m ∑ ∑ = = α α ≈ α α ρ A ω ω A Tr( ) A A u u u u α α α α = 1 ω ≈ 0 discard unimportant states: α α ρ : eigenstate of u m : truncation number ≥ ω ρ ( 0): eigenvalue of α m − ∑ ω 1 : truncation error α α = 1

  6. E. Jeckelmann, Phys. Rev. B Dynamical DMRG 66 , 045114 (2002) = ψ system environment ij j i ∑ ∑ ∑ ∑ , ρ = ψ ψ ρ = ψ ψ = p α p 1 α α α i’j ii’ i j ii’ , ij , i’j α α j j Multi targets: α Single target 1 1 χ ω = − ˆ ˆ ( ) Im 0 O O 0 π ω + − + γ H i E 0   0   ψ α ω = ⇒ ρ ω ˆ  ( ) O 0 ( )  1  ˆ 0 O Correction vector ω + − + γ   H i E 0 The reduced density matrix depends on ω  perform DMRG for a given energy ω .

  7. Process of ω A given energy Dynamical DMRG Ground state : 0 Lanczos method Target states : 1 ˆ ˆ O 0 , O 0 ω + − + γ H i E 0 ・ ・ ・ Generation and diagonalization ・ ・ ・ ( ) ρ ω ρ ・ ・ ・ † of U U † Transformation of operators: UAU 1 1 Calculation of χ ω = − ˆ ˆ † ( ) Im 0 O O 0 π ω + − + γ physical quantities H i E 0

  8. How to calculate the correction vector 1 ( ) φ ω = ˆ 0 O Lorentzian broadening ω − + γ H i 1. Modified conjugate gradient method ( ) ( ) E. Jeckelmann, ω − + γ φ ω = ˆ 0 H i O Phys. Rev. B 66 , 045114 (2002) Solve this equation iteratively for a given ω . 2. Lanczos method M ∑ 1 ( ) φ ω ˆ   ~ n n O 0  ω − + γ E i =   n 1 n  ˆ 0 n O Lanczos vector starting from Independent of ω

  9. How to calculate the correction vector 1 ( ) φ ω = ˆ 0 O ω − + γ H i 3. Polynomial expansion using Legendre functions [S.Sota, T.T., PRB 82 , 195130 (2010)] L ∑ [ ] ( ) φ ω ω − π ω ˆ ~ 2 Q ( ) i P ( ) P H O ( ) 0 l l l = l 0 Legendre polynomial of the first kind P l Q Legendre polynomial of the second kind l Recursive relation + ω = + ω ω − ω ( l 1) P ( ) (2 l 1) P ( ) lP ( ) + − l 1 l l 1 ω and H : separated polynomials.

  10. A problem of polynomial expansion Gibbs oscillation L 2 ∑ δ ε − ε δ ε − ε = ε ε ( ') ~ ( ') P ( ) P ( ') + L l l 2 l 1 = l 0 L

  11. Introduce Gaussian-type broadening to remove Gibbs oscillation ( ) 2  ε − H [S. Sota and M. Itoh, − 1   1  ∫ → = ε σ 2 P H ( ) P H ( ) d e 2 P H ( ) J. Phys. Soc. Jpn. 76 , 054004 (2007)] l l l σ πσ − 2 1 2 σ = π 2 / L + + 2 l 1 l 2 l 1      = + + σ 2 ' P ( H ) H P H ( ) P ( H ) P H ( ) + − + + + l 1 l l 1 l σ σ σ σ l 1 l 1 l 1 Recursion relations: ( )    = + + ' ' P ( H ) 2 l 1 P H ( ) P ( H ) + − l 1 l l 1 σ σ σ ( ) ( ) δ ε − δ ε − 0.2 0.2 L L σ without Gaussian averaging σ = π with 2 / L L L Gaussian broadening

  12. Other applications of polynomial expansion Time-evolved wave function ( ) ( ) − δ φ + δ = φ iH t t t e t L ∑ ( ) ( ) ( ) − l + δ φ ~ 1 2 l 1 j ( t P H ) ( ) t l l = l 0 spherical Bessel function j l Thermodynamic properties ( )  ξ β = β ξ H 2 e + L 2 l 1 ∑ − β ξ ~ C i ( 2) P H ( ) l l 2 = l 0 modified spherical i ( ) ( )   = ξ β ξ β l Z Partition function Bessel function S. Sota, T. T., Phys. Rev. B 78 , 113101 (2008)

  13. Extension to two dimensions (2D-DMRG) real-space parallelization method c.f. E. M. Stoudenmire, S. R. White, Phys. Rev. B 87 , 155137 (2013) sweeping Added sites for the sweep of a fraction of system added sites direction of sweeping update the information of operators update by MPI communications.

  14. Performance in K computer 3 × 8 triangular Hubbard model 50 FLOPS/PEAK (%) 40 30 20 10 0 5 10 15 20 region number elaplsed time (sec.) 1500 1000 500 0 5 10 15 20 region number All most perfect road balance

  15. Performance in K computer Ex. One-dimensional extended Hubbard model efficiency elapsed time 15

  16. Triangular Hubbard model U c1 U / t U c1 U c2 120 ° AF metal Spin liquid? J. Kokalj, R. H. McKenzie, Phys. Rev. Lett. 110 , 206402 (2013)

  17. A recent application of 2D-DMRG for ground state: triangular Hubbard model (6x6 cylinder) T. Shirakawa, T.T., J. Kokalj, S. Sota, S. Yunoki, arXiv:1606.06814

  18. Outline Density-matrix renormalization group ( DMRG) ► DMRG ► Dynamical DMRG ► Extension to two dimensional systems Recent results obtained by DDMRG ► Spin excitations in 1D quantum spin systems ► Optical excitations in 1D Mott insulator coupled to phonon ・ linear absorption ・ Third-harmonic generation (THG) - H. Matsuzaki, H. Nishioka, H. Uemura, A. Sawa, S. Sota, T. Tohyama, and H. Okamoto, Phys. Rev. B 91 , 081114(R) (2015) - S. Sota, T. Tohyama, and S. Yunoki, J. Phys. Soc. Jpn. 84 , 054403 (2015) ► Spin and charge excitations in square t-t’-U Hubbard model - T. Tohyama, K. Tsutsui, S. Sota, and S. Yunoki, Phys. Rev. B 92 , 014515 (2015)

  19. Spin-Peierls (SP) compound CuGeO 3 M. Hase, I. Terasaki, K. Uchinokura, PRL 70 , 3651 (1993) - T SP =14K - the first inorganic SP system - edge-shared Cu-O chain with S=1/2 on Cu 2+ - deviation from Heisenberg model (Bonner & Fisher curve) < T T SP   ∑ ∑ = − − δ ⋅ + α ⋅ i  S S S S  H J (1 ( 1) ) δα + + 1 i i 1 i i 2   i i δ =0.022 at T =0

  20. Phonons in CuGeO 3 - No evidence of soft phonon along the Cu-O chain - 3D character of the structural part of the SP transition q=( π , 0 , π ) [M. Braden et al ., PRB 66 , 214417 (2002)] In-chain soft phonon in organic SP material ω ph = 1.4 meV, ∆ = 1.8 meV (TTF)CuS 4 C 4 (CF 3 ) 4 ∆ > ω ph In-chain phonon in CuGeO 3 ω ph = 26 meV, 13 meV ∆ = 2 meV ∆ << ω ph antiadiabatic limit [G. Uhrig, PRB 57 , R14004 (1998)] In-chain phonon may couple to spin even below the SP transition.

  21. Spin-Peierls model   ∑ ∑ = ⋅ + α ⋅ H J  S S S S  + + SP i i 1 0 i i 2   i i ∑ + ω † b b 0 i i i ( ) J ∑ + λ + − + ⋅ † † b b b b S S + + + i i i 1 i 1 i i 1 2 i λ : unknown

  22. S (q, ω ) of spin-Peierls model by DDMRG T. Sugimoto, S. Sota, and T.T., L =16, T =0 JPSJ 81 , 034706 (2012) α 0 = 0.36 ω 0 = 1.5 J ω 0 λ = 0.5 ω 0 / J λ = 0 Phonon-assisted spin excitation is expected above the upper edge of spin continuum for CuGeO 3 .

  23. New diamond quantum spin lattice K 3 Cu 3 AlO 2 (SO 4 ) 4 M. Fujihala et al., J. Phys. Soc. Jpn. 84 , 073702 (2015)

  24. J 3 J 5 J 2 J m J 4 J 1 J d A J 3 , J 4 J m , J d , J d ’ J 1 J 2 J 5 g K -22.5 -300 -37.5 510 75 2.14 Rb -97.2 -97.2 32.4 445.5 81 2.14 Cs -48 -288 29.4 441.6 96 2.18

  25. S(q, ω ) of K 3 Cu 3 AlO 2 (SO 4 ) 4 by DDMRG 240-site ring (80 unit cells) m =360

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend