content
play

Content Introduction into basic physical processes causing - PowerPoint PPT Presentation

C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module Global Transformation and Environmental Change Prof. Dr. Jrgen Scheffran & Prof. Dr. Udo Schickhoff with slides provided by Jrgen Bhner Prof. Dr. Jrgen Scheffran Abteilung


  1. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Prof. Dr. Jürgen Scheffran & Prof. Dr. Udo Schickhoff with slides provided by Jürgen Böhner Prof. Dr. Jürgen Scheffran Abteilung Integrative Geographie, Universität Hamburg Research Group Climate Change and Security Grindelberg 7, Room 2014 (Sprechstunde nach Vereinbarung) Tel: 040 – 42838 7722 Email: juergen.scheffran@zmaw.de Web: www.clisec-hamburg.de

  2. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Part A: Climate and Environment – Jürgen Scheffran I Introduction II The Climate System III Climate Change IV Environmental Change Part B: Human Impact on World Vegetation – Udo Schickhoff Final Exam

  3. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Literature:  Barry, R.G.; Chorley, R.J. (2003) Atmosphere, weather, and climate, Routledge.  Schönwiese, Christian-Dietrich (2013) Klimatologie , 4.th edition, UTB.  IPCC (2013) Climate Change 2013: The Physical Science Basis, Contribution of WG I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, WGI AR5 4th Assessment Report.  Gebhardt, H., Glaser, R., Radtke, U., Reuber, P. (eds.) (2012) Geographie - Physische Geographie und Humangeographie , Berlin: Springer.  IPCC (2007) Climate Change 2007 – The Physical Science Basis, Contribution of WG I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK und NY, USA.  Oke, T.R. (1987): Boundary Layer Climates. – Wiley & Sons, New York.  McKnight, T.L. & D. Hess (2008): Physical Geography. – Pearson. London  Hess, D. & T.L. McKnight (2009): Physische Geographie. – Pearson. London.

  4. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Aims of the lecture Knowledge of the fundamentals of climate system dynamics and factors affecting climate change in present, past and future; Insights in climate and human-induced environmental changes and pressures on environmental resources, ecosystem functions and services with a particular focus on human impact on world vegetation

  5. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Content  Introduction into basic physical processes causing fluctuations in the Earth's climate  Evolution of the Earth’s climate system and the climate history  Climate-determined process domains and environments  Impact of climate change on environmental resources (soil, water, vegetation)  Interdependencies of climate and human induced degradation processes and deterioration of ecosystem functions and services with a particular focus on human impact on world vegetation  Scenario-based projections of future climate and environmental change ; climate change adaptation and mitigation strategies.

  6. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 observation (global mean) 0.8 Temperatureanomalies [°C] 0.6 0.4 0.2  0.0 -0.2 -0.4 -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  7. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 observation (global mean) statistical simulation (neuronal net) 0.8 Temperatureanomalies [°C] 0.6 0.4 0.2  0.0 -0.2 -0.4 -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  8. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 explosive volcanic eruption : observation (global mean) Kr = Krakatau (1883) statistical simulation (neuronal net) 0.8 SM = Santa Maria (1902) Ag = Agung (1963) Temperatureanomalies [°C] SA = St. Augustine (1976) 0.6 EC = El Chichon (1982) Pi = Pinatubo (1991) Ka = Kasatochi (2008) 0.4 0.2  0.0 -0.2 -0.4 Kr SM Ag SA EC Pi Ka -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  9. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 explosive volcanic eruption : observation (global mean) Kr = Krakatau (1883) statistical simulation (neuronal net) 0.8 SM = Santa Maria (1902) sulfat signal Ag = Agung (1963) Temperatureanomalies [°C] SA = St. Augustine (1976) 0.6 EC = El Chichon (1982) Pi = Pinatubo (1991) Ka = Kasatochi (2008) 0.4 0.2  0.0 -0.2 -0.4 Kr SM Ag SA EC Pi Ka -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  10. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 explosive volcanic eruption : observation (global mean) Kr = Krakatau (1883) statistical simulation (neuronal net) 0.8 SM = Santa Maria (1902) sulfat signal Ag = Agung (1963) Temperatureanomalies [°C] ● SA = St. Augustine (1976) 0.6 EC = El Chichon (1982) ● Pi = Pinatubo (1991) Ka = Kasatochi (2008) 0.4  ● ● 0.2 ●  ● El Niño  0.0  ●  -0.2   -0.4 Kr SM Ag SA EC Pi Ka -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  11. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 explosive volcanic eruption : observation (global mean) Kr = Krakatau (1883) statistical simulation (neuronal net) 0.8 SM = Santa Maria (1902) sulfat signal Ag = Agung (1963) greenhouse gas signal Temperatureanomalies [°C] ● SA = St. Augustine (1976) 0.6 EC = El Chichon (1982) ● Pi = Pinatubo (1991) Ka = Kasatochi (2008) 0.4  ● ● 0.2 ●  ● El Niño  0.0  ●  -0.2   -0.4 Kr SM Ag SA EC Pi Ka -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  12. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ 1.0 explosive volcanic eruption : observation (global mean) Kr = Krakatau (1883) statistical simulation (neuronal net) 0.8 SM = Santa Maria (1902) sulfat signal Ag = Agung (1963) greenhouse gas signal Temperatureanomalies [°C] ● SA = St. Augustine (1976) greenhouse gas & particle signal 0.6 EC = El Chichon (1982) ● Pi = Pinatubo (1991) Ka = Kasatochi (2008) 0.4  ● ● 0.2 ●  ● El Niño  0.0  ●  -0.2   -0.4 Kr SM Ag SA EC Pi Ka -0.6 1860 1880 1900 1920 1940 1960 1980 2000 Global Temperatures 1860–2008 (SCHÖNWIESE 2009)

  13. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Left (a): Comparison between global mean surface temperature anomalies (°C) from obser- vations (black) and AOGCM simulations forced with anthropogenic and natural forcings (58 simulations produced by 14 models). Right (b): Comparison between global mean surface temperature anomalies (°C) from obser- vations (black) and AOGCM simulations forced with natural forcings only (19 simulations produced by 5 models). According to the Fourth Assessment Report (AR4) of the IPCC (2007), the likelihood of solely natural forcings for the warming in the last 50 years is below 5 % (IPCC 2007).

  14. C LIMATE AND E NVIRONMENTAL C HANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Left (a): Comparison between global mean surface temperature anomalies (°C) from obser- vations (black) and AOGCM simulations forced with anthropogenic and natural forcings (58 simulations produced by 14 models). Right (b): Comparison between global mean surface temperature anomalies (°C) from obser- vations (black) and AOGCM simulations forced with natural forcings only (19 simulations produced by 5 models). According to the Fourth Assessment Report (AR4) of the IPCC (2007), the likelihood of solely Multi-model averages and assessed ranges for surface warming (IPCC 2007) natural forcings for the warming in the last 50 years is below 5 % (IPCC 2007).

Recommend


More recommend