advances in stellarator gyrokinetics
play

Advances in stellarator gyrokinetics Per Helander and T. Bird, F. - PowerPoint PPT Presentation

Max-Planck-Institut fr Plasmaphysik Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos Per Helander IAEA 2014 1 Max-Planck-Institut fr Background


  1. Max-Planck-Institut für Plasmaphysik Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos Per Helander IAEA 2014 1

  2. Max-Planck-Institut für Background Plasmaphysik • Wendelstein 7-X will start experiments in 2015 – optimised for low neoclassical transport • Turbulence? • Electrostatic instabilities: – ion-temperature-gradient (ITG) driven modes – trapped-electron modes Per Helander IAEA 2014 2

  3. Max-Planck-Institut für W7-X from above Plasmaphysik Bad curvature q‘(r) < 0 everywhere Per Helander IAEA 2014 3

  4. Max-Planck-Institut für Gyrokinetic stellarator codes Plasmaphysik • EUTERPE – global, particle-in-cell, linear in 3D – see poster TH/P4-49 by A.Mishchenko • GENE – radially local (flux-tube or full-surface), continuum, nonlinear • Both codes: electromagnetic, collisions etc. – here: collisionless, electrostatic instabilities Per Helander IAEA 2014 4

  5. Max-Planck-Institut für Benchmark Plasmaphysik • Linear ITG growth rate with Boltzmann electrons vs ion temperature gradient in W7-X: Per Helander IAEA 2014 5

  6. Max-Planck-Institut für W7-X vs LHD Plasmaphysik • Global, linear ITG simulations in W7-X (EUTERPE) W7-X Per Helander IAEA 2014 6

  7. Max-Planck-Institut für W7-X vs LHD Plasmaphysik • Global, linear ITG simulations in LHD (EUTERPE) LHD Per Helander IAEA 2014 7

  8. Max-Planck-Institut für Nonlinear simulations Plasmaphysik • ITG turbulence with Boltzmann electrons (GENE): rms potential fluctuations DIII-D W7-X Per Helander IAEA 2014 8

  9. Max-Planck-Institut für ITGs with Boltzmann electrons Plasmaphysik • Nonlinear simulations with Boltzmann electrons (grad T e =0, r *=1/150): – heat flux Per Helander IAEA 2014 9

  10. Max-Planck-Institut für Turbulent transport (ITG ae) Plasmaphysik • So far, in W7-X comparable to that in a typical tokamak, but “softer“: – depends on r * Per Helander IAEA 2014 10

  11. Max-Planck-Institut für Trapped-electron modes Plasmaphysik Bad curvature trapped particles Per Helander IAEA 2014 11

  12. Max-Planck-Institut für Trapped-electron modes Plasmaphysik • Instability requires where • In an orbit-confining (omnigenous) stellarator Per Helander IAEA 2014 12

  13. Max-Planck-Institut für Maximum-J configurations Plasmaphysik • But the precession frequency can be written so • Stability is thus promoted by “the maximum - J“ condition Rosenbluth, Phys. Fluids 1968 Per Helander IAEA 2014 13

  14. Max-Planck-Institut für Physical picture Plasmaphysik • The quantity, is an adiabatic invariant. E = energy. • Hence, if a low-frequency instability moves a particle radially, then implying that it costs energy to move a particle radially outward Per Helander IAEA 2014 14

  15. Max-Planck-Institut für Trapped-particle modes Plasmaphysik • Theorem: collisionless trapped-electron and trapped-ion modes are stable if for all species a. • Favourable bounce-averaged curvature. • In a maximum-J device, the precession drift is reversed compared with a tokamak – no resonance with drift waves. Per Helander IAEA 2014 15

  16. Max-Planck-Institut für ITGs and TEMs with kinetic electrons Plasmaphysik • Simulations with and without kinetic electrons (grad T e =grad T i ): – growth rate for the most unstable wave number Kinetic electrons Boltzmann electrons • Kinetic electrons are stabilising. Per Helander IAEA 2014 16

  17. Max-Planck-Institut für ITGs with kinetic electrons Plasmaphysik • Simulations with and without kinetic electrons (grad T e =0): – kinetic electrons in a flux tube Per Helander IAEA 2014 17

  18. Max-Planck-Institut für W7-X, HSX and DIII-D Plasmaphysik • Another case: HSX simulations by Benjamin Faber, Madison Per Helander IAEA 2014 18

  19. Max-Planck-Institut für Conclusions Plasmaphysik • ITG and TEM modes exist in stellarators, but display qualitative differences. – turbulent fluctuations much less evenly distributed. • Wendelstein 7-X is, to some approximation, a maximum-J device. – most orbits have favourable bounce-averaged curvature • Strongly stabilising for trapped-particle instabilities. • ITG modes also benefit from stabilising action of the (kinetic) electrons. • Less turbulent transport than in tokamaks? – too early to say Per Helander IAEA 2014 19

  20. Max-Planck-Institut für Plasmaphysik Extra Material Per Helander IAEA 2014 20

  21. Max-Planck-Institut für Gyrokinetic calculation of TEMs Plasmaphysik • Linear, flux-tube, electrostatic GENE simulations in DIII-D and W7-X – no ion temperature gradient Proll, Xanthopoulos and Helander, submitted to PoP Per Helander IAEA 2014 21

  22. Max-Planck-Institut für ITGs with kinetic electrons Plasmaphysik • Simulations with and without kinetic electrons (grad T e =0): – growth rate for the most unstable wave number Kinetic electrons Boltzmann electrons • Kinetic electrons are stabilising. Proll, Xanthopoulos and Helander, submitted to PoP Per Helander IAEA 2014 22

  23. Max-Planck-Institut für Another argument for stable TEMs Plasmaphysik • In a maximum-J device, the precession drift is reversed compared with a tokamak, since – no resonance between precessing electrons and drift waves Per Helander IAEA 2014 23

  24. Max-Planck-Institut für Energy balance Plasmaphysik • Linear, collisionless, electrostatic gyrokinetics. – energy balance: • Substitute the solution of the gyrokinetic equation for fast- moving partices – at marginal stability Per Helander IAEA 2014 24

  25. Max-Planck-Institut für Outline of calculation Plasmaphysik • Conventinal drift-wave ordering • Expanding in the inverse aspect ratio – few trapped particles, gives electron drift-wave frequency • In next order, instability from wave-particle resonance only if – impossible unless Helander et al, PPCF 2012 Per Helander IAEA 2014 25

  26. Max-Planck-Institut für Energy balance Plasmaphysik • Linear, collisionless, electrostatic gyrokinetics in ballooning space: • Multiply by J 0 f * and integrate over phase space. • Energy balance: Per Helander IAEA 2014 26

  27. Max-Planck-Institut für Energy balance, cont‘d Plasmaphysik • For fast-moving particles • the energy transfer at marginal stability becomes • Stabilising action if bounce-averaged curvature is favourable: Per Helander IAEA 2014 27

  28. Max-Planck-Institut für Algebra Plasmaphysik • Conventinal drift-wave ordering • Expanding in the inverse aspect ratio – few trapped particles, gives electron drift-wave frequency • In next order, instability from resonant denominator only if – impossible unless Helander et al, PPCF 2012 Per Helander IAEA 2014 28

  29. Max-Planck-Institut für Trapped-electron modes Plasmaphysik • TEMs result from overlap between – bad curvature and – trapping regions Per Helander IAEA 2014 29

  30. Max-Planck-Institut für Trapped-electron modes Plasmaphysik Per Helander IAEA 2014 30

  31. Max-Planck-Institut für Trapped-electron modes Plasmaphysik Per Helander IAEA 2014 31

  32. Max-Planck-Institut für Trapped-electron modes Plasmaphysik Per Helander IAEA 2014 32

  33. Max-Planck-Institut für Trapped-electron modes Plasmaphysik Per Helander IAEA 2014 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend