magnetohydrodynamic turbulence
play

Magnetohydrodynamic Turbulence Wolf-Christian Mller - PowerPoint PPT Presentation

Magnetohydrodynamic Turbulence Wolf-Christian Mller Max-Planck-Institut fr Plasmaphysik, Garching, Germany Dieter Biskamp, Max-Planck-Institut fr Plasmaphysik, Garching, Germany Roland Grappin, Observatoire de Paris-Meudon, Meudon, France


  1. Magnetohydrodynamic Turbulence Wolf-Christian Müller Max-Planck-Institut für Plasmaphysik, Garching, Germany Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany Roland Grappin, Observatoire de Paris-Meudon, Meudon, France James Merrifield, Sandra Chapman, University of Warwick, Warwick, United Kingdom Richard Dendy, UKAEA Culham Division, Abingdon, United Kingdom

  2. Turbulence Turbulent flows: ensemble of random fluctuations without apparent structure/order Systems appears to be ’smooth’ (no specific feature/symmetry to cling to). Under idealized conditions (statistical stationarity/homogeneity, no boundaries, no friction) − → (generalized) scale-covariance Self-similar function f ( ℓ ) = A · ℓ γ − → f ( λ ℓ ) ∼ λ γ f ( ℓ ) Function f ( ℓ ) under magnifying glass ( ℓ → λ ℓ ) looks identical (neglecting constant factor) For simplificity: statistical isotropy, i.e. ensemble average �•� independent of direction implies stat. homogeneity (independence of position). Turbulent fields exhibit statistical (self-)similarity !

  3. Tackling the problem Starting point for mostly phenomenological theories dealing with ◮ temporal/spectral evolution of low-order statistical moments, e.g. magnetic and kinetic energies, helicities, associated spectral fluxes ◮ spatially intermittent structure of turbulent fields New development (emerging from turbulent passive-scalar transport): ◮ Lagrangian statistics and invariants Applications: ◮ lifetime of/structure formation in interstellar molecular clouds (star-formation) ◮ transport/dispersion/acceleration of substances/particles (nuclear fusion/environmental sciences/cosmic rays) ◮ magnetic field amplification (turbulent dynamo)/formation of large-scale structures (meteorology) ◮ friction/mixing/flow control (engineering)

  4. Ideal Invariants and Cascade directions V dV ( v 2 + b 2 ) ◮ total energy E = � no dissipation ◮ cross helicity H C = � V dV v · b frozen-in field lines ◮ magnetic helicity H M = b = ∇ × a � V dV a · b , no reconnection Ideal invariants satisfy detailed balance relations, e.g., triad interactions (quadratic nonlinearities) E k 1 + ˙ ˙ E k 2 + ˙ E k 3 = 0 , k 1 + k 2 + k 3 = 0 ⇐ = small k = ⇒ large k Inverse cascade direct cascade inverse cascade: formation of large-scale coherent structures. Detailed balance prerequisite for cascade/power-law scaling.

  5. Kolmogorov-Richardson Picture Large Energy Small-scale 0 10 eddies (arb. units) structures Direct cascade -1 10 Inverse cascade Dissipation -2 Inertial Drive 10 range range range -2 -1 0 10 10 10 k (arb. units)

  6. Energy Cascade Phenomenology ◮ Kolmogorov (K41) Turbulent eddies break up in successively smaller structures Time-scale: τ NL ∼ ℓ/ v ℓ , ε ∼ v 2 l / τ NL , v 2 ℓ ∼ kE k → Energy spectrum E ( k ) ∼ k − 5 / 3 ◮ Iroshnikov-Kraichnan (IK) Alfvén waves interact nonlinearly along magnetic field τ ∗ ∼ τ NL Time-scale: τ A ∼ ℓ/ B 0 , ε ∼ v 2 l / τ ∗ , τ A τ NL → Energy spectrum E ( k ) ∼ k − 3 / 2 ◮ Goldreich-Sridhar Magnetic field causes local anisotropy → Field-parallel: transfer negligible → Field-perpendicular: Kolmogorov cascade → Perpendicular energy spectrum E ( k ⊥ ) ∼ k − 5 / 3 ⊥

  7. Doradus 30

  8. ——————————————————————————-

  9. Probing the Solar Wind

  10. ——————————————————————————-

  11. Experimental Observation 10 2 f -1.7 E f 10 0 f -4 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 f Leamon et al. JGR ’98 Solar wind fluctuations measured by WIND probe at ≃ 1 A . U . ⇒ K41 scaling ∼ k − 5 / 3

  12. Incompressible Magnetohydrodynamics (MHD) Simplified incompressible fluid model: ∂ t v = − ( v · ∇ ) v − ∇ p − b × ( ∇ × b )+ Re − 1 ∆ v , ∂ t b = ∇ × ( v × b )+ Rm − 1 ∆ b , ∇ · v = ∇ · b = 0 . ◮ Kinetic and magnetic Reynolds number: Re : = ℓ 0 v 0 Rm : = ℓ 0 v 0 η µ ◮ Kinematic viscosity µ , magnetic diffusivity η ◮ Turbulence, if Re,Rm ≫ 1 – Solar convection zone (Re ∼ 10 15 , Rm ∼ 10 8 ) – Black hole accretion disk (Re ∼ 10 11 , Rm ∼ 10 10 ) – Earth’s liquid core (Re ∼ 10 9 , Rm ∼ 10 2 )

  13. Turbulent Magnetic Field (Isotropic)

  14. Numerical Simulation (Isotropic) Pseudospectral direct numerical simulation ( 1024 3 collocation points) Three-dimensional periodic cube Initially: nonhelical isotropic random fields with amplitudes ∼ exp [ − k 2 / ( 2 k 2 0 )] , k 0 = 4

  15. Introducing Anisotropy Switching from isotropic K41 to anisotropic Goldreich-Sridhar configuration by imposed mean magnetic field B 0 = B 0 e z ( B 0 ≃ 5 | b | rms )

  16. Turbulent Magnetic Field (Anisotropic)

  17. Numerical Simulation (Anisotropic) Three-dimensional forced anisotropic turbulence ( 1024 2 × 256 collocation points) displays IK-scaling ∼ k − 3 / 2

  18. Closure Theory Regarding statistical moments of fluid equations schematically: ∂ t � u � = � uu � ∂ t � uu � = � uuu � ∂ t � uuu � = � uuuu � . . . Closure (Quasi-normal approximation): 4 th and higher order moments → Expressed via second-order moments Problem: Unphysical, negative energy spectra possible Solution: Introduction of damping term on 3rd order level (Eddy-damped-quasi-normal-Markovian (EDQNM) approximation)

  19. Spectral EDQNM Equations Equation for energy spectrum E k : � � ( ∂ t + 2 Re − 1 k 2 ) E k = △ d p d q Θ kpq T kpq ◮ ‘ △ ’: Integration over modes with k + p + q = 0 ◮ T kpq = T kpq ( E p , E q ,... ) complicated energy transfer function ◮ Θ kpq phenomenological relaxation time of triad interactions (remains of Green’s function after Markovianization) Inertial range: Constant spectral energy flow ε towards small-scales (direct cascade) � � � d k d p d q Θ kpq T kpq ∼ Θ k k 4 E 2 ∂ t E = ε = k � − 1 ⇒ Quartic equation in E k With Θ k = τ − 1 NL + τ − 1 � A τ NL ≪ τ A ⇒ E k ∼ k − 5 / 3 � K41 Phenomenological dead-end τ A ≪ τ NL ⇒ E k ∼ k − 3 / 2 IK Matthaeus & Zhou, Phys.Fluids B, ’89

  20. Inertial-Range Energetics EDQNM equation for residual energy spectrum, E R k = E M k − E K k : � � ( ∂ t + 2 Re − 1 k 2 ) E R △ d p d q Θ kpq R kpq k = Right-hand side complicated function with two types of contributions: ◮ Spectrally local interactions ( k ∼ p ∼ q ): – fluid scrambling on time scale τ NL ∼ ℓ ∼ ( k 3 E k ) − 1 / 2 √ (Dynamo effect) v 2 ℓ + b 2 ℓ – R Dyn ∼ Θ k k 3 E 2 k ◮ Spectrally non-local interactions (e.g. k ≪ p ∼ q ): – Alfvén-wave scattering on time scale τ A ∼ ( kB 0 ) − 1 ≃ ( k 2 E M ) − 1 / 2 (Alfvén effect) – R Alf ∼ Θ k k 2 E M E R k

  21. Residual Energy Assuming equilibrium between — magnetic field amplification by field line streching (small-scale dynamo) — energy equipartition by Alfvén wave effect � 2 � τ A ⇒ E R E k ∼ kE 2 k ∼ τ NL k Anisotropic 1024 2 × 256 simulation, B 0 = 5 Isotropic 1024 3 simulation, B 0 = 0 K41: E k ∼ k − 5 / 3 ⇒ E R IK: E k ∼ k − 3 / 2 ⇒ E R k ∼ k − 7 / 3 k ∼ k − 2

  22. Two-Dimensional Simulations (MHD) Left: Total energy spectrum × k 3 / 2 Right: Residual energy spectrum × k 2 2048 2 spectral MHD turbulence simulations Biskamp & Schwartz Chaos, Solitons & Fractals ’91

  23. Energy Contours in Plane along B 0 Strong anisotropy visible. As opposed to isotropic simulation (nearly perfect circles). Cho & Vishniac ApJ, ’00

  24. k ⊥ - k � Scaling Consequence of τ NL ∼ τ A (’critical balance’) Distortion of field line by eddy of size ℓ on time-scale τ NL triggers Alfvén wave of length λ ∼ b 0 τ A ⇒ k � ∼ k 2 / 3 Goldreich & Sridhar ApJ ’94, Galtier et al. ’05 ⊥

  25. Spatial Structure of Dissipation (Hydrodynamics)

  26. Measuring Structure ◮ Regard turbulent field difference over distance ℓ , δ v ℓ = [ v ( x ) − v ( x + ℓ )] · ˆ ℓ ℓ � ∼ ℓ ζ p display power-law scaling ◮ Statistical moments � δ v p ◮ Change of scaling exponents ζ p indicates deviation from self-similarity

  27. Third-Order Structure Function 1.00 Slope 0.10 + 3 S 1.6 1.4 1.2 1.0 0.01 0.8 0.6 0.4 100 10 100 1000 L Hydrodynamics: S 3 = 4 5 ε ℓ Kolmogorov, ’41 MHD: ∑ 3 i = 1 � δ z ∓ ℓ ( δ i z ± 3 ε ± ℓ ℓ ) 2 � = − 4 Politano & Pouquet PRE & GRL ’98

  28. Extended Self-Similarity (ESS) 1.0 Slope: 0.39 Slope: 0.72 1.0 S+ S+ 1 2 0.1 0.1 0.01 0.10 1.00 0.01 0.10 1.00 S+ S+ 3 3 Slope: 1.23 10.000 Slope: 1.42 1.00 1.000 S+ 4 0.10 S+ 5 0.100 0.010 0.01 0.001 0.01 0.10 1.00 0.01 0.10 1.00 S+ S+ 3 3 Observe extended scaling-range by plotting structure functions, S q ∼ ℓ ζ q , against reference structure function, S q 0 ∼ ℓ ζ q 0 : ⇒ S q ( S q 0 ) ∼ ℓ ζ q ζ q 0 ∼ ℓ ξ q ⇒ ζ q = ξ q / ζ q 0 Benzi et al. PRE ’93

  29. Spatial Structure of Dissipation (MHD) Left: Dissipative current sheets in isotropic MHD turbulence Right: Same picture with strong mean magnetic field pointing upwards

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend