mathematical strategies and error quantification in the
play

Mathematical strategies and error quantification in the - PowerPoint PPT Presentation

Mathematical strategies and error quantification in the coarse-graining of many-body stochastic systems Markos Katsoulakis University of Massachusetts, Amherst, USA and University of Crete, Greece 1. Coarse-graining of polymers; DPD methods


  1. Mathematical strategies and error quantification in the coarse-graining of many-body stochastic systems Markos Katsoulakis University of Massachusetts, Amherst, USA and University of Crete, Greece

  2. 1. Coarse-graining of polymers; DPD methods 2. Stochastic lattice dynamics/ KMC Time (s) Microscopic lattice Coarse lattice Microscopics �→ CG system �→ Reconstructed Microscopics

  3. Tsch¨ op, Kremer, Batoulis, B¨ urger and Hahn Acta Polymer. ’98.

  4. Microscopics: United Atom (UA) Model • Continuum model: X ∈ ( R 3 ) N – positions of n atoms on one macromolecule; m macromolecules; N = nm . • Hamiltonian: H N ( X ) = H b ( X )+ H nb ( X )+ H Coul ( X )+ H wall + H kin Bonded Interactions: Gaussian, FENE, etc. short-range � H b ( X ) = U b ( θ i , φ i , r i ) short-range i Non-Bonded Interactions: 12-6 Lennard Jones long-range � U LJ H nb ( X ) = nb ( | x i − x j | ) i,j

  5. 1 Equilibrium Gibbs measure at β = kT . µ ( dX ) = 1 Z e − β H ( X ) Π dx i Molecular Dynamics ( via Langevin thermostat) • UA is a typical set-up for CG in polymer science literature: Briels, et. al. J.Chem.Phys. ’01; Doi et. al. J.Chem.Phys. ’02; Kremer et. al. Macromolecules ’06, etc. Also the parametric statistics approach: M¨ uller-Plathe Chem.Phys.Chem ’00.

  6. CG procedure, ”blobs”: for instance Doi, et al. ’02 T X = Q = ( q 1 , . . . , q m ) ∈ Q , where q i ∈ R 3 . Exact CG Hamiltonian ¯ H ( Q ) via Renormalization map : � H ( Q ) = − 1 e − β H ( X ) dX ¯ β log { X | T X = Q }

  7. Break-up of computational task: Simplifying assumptions (i) ¯ H decouples: � H ( Q ) = ¯ ¯ H b + ¯ U b + ¯ ¯ H nb = U nb CG var. U φ (ii) ¯ U b = ¯ b + ¯ b + ¯ U θ U r b where each term depends only on torsion angle φ , rotation angle θ and distance r respectively between successive CG particles. (iii) ¯ U nb depends only on two-body interactions between CG par- ticles; no multi-body interactions included.

  8. How to calculate the CG non-bonded interactions ¯ U nb : McCoy-Curro scheme, Macromolecules ’98. For two isolated small molecules with centers of mass at q 1 , q 2 : � U nb ( | q 1 − q 2 | ) = − 1 e − β H ( X ) dX β log { X | T X =( q 1 ,q 2 ) } • The calculation is computationally feasible but disregards multi- body interactions. • Extension to long chains: Doi et al. J.Chem.Phys. ’02.

  9. Challenges in coarse-graining methods Often: wrong predictions in dynamics, phase transitions, melt structure, crystallization, etc. See for instance: • CG in polymers: sensitive dependence to temperature low vs. high Doi et al. J.Chem.Phys. ’02

  10. • DPD: Pivkin, Karniadakis J. Chem. Phys. (2006): artificial crystallization • ”classical” example: 1-D nearest neigbor Ising vs. Curie-Weiss (or Mean Field)

  11. Mathematics and Numerics of CG 1. Error Quantification and numerical accuracy of CG methods. 2. The role of randomness: need to approximate the measure rather than just H = H ( X ): T ∗ µ micro ( dX ) ≈ µ cg ( dQ ) ∼ e − β ¯ e − β H ( X ) dX ∼ µ micro ( dX ) H ( Q ) dQ �→ 3. The role of multi-body CG interaction terms. 4. ”Reverse map”-reconstruct microscopic info from CG: Mathematical formulation in terms of relative entropy; loss of information during CG–information re-insertion in reverse map. joint work with: P. Plech´ aˇ c (U of TN, ORNL), V. Harmandaris (Max Planck Inst. Polymers, Mainz)

  12. 2. Stochastic lattice dynamics–Ising Systems σ ( x ) = 0 or 1: site x is resp. empty or occupied. Hamiltonian: H N ( σ ) = − 1 � x � = y J ( x, y ) σ ( x ) σ ( y ) + h � x σ ( x ) 2 - J : potential with interaction range L , J ( x − y ) = 1 LV � i − j � , x = i/N, y = j/N L possibly short-/long- range interactions. 1 Canonical Gibbs measure: at the inverse temperature β = kT , 1 exp � − β H N ( σ 0 ) � µ Λ , β ( σ = σ 0 ) = P N ( σ = σ 0 ) Z Λ , β

  13. Arrhenius adsoprtion/desorption dynamics: σ ( x ) = 0 or 1: site x is resp. empty or occupied. Generator: L X f ( σ ) = � x c ( x, σ , X )[ f ( σ x ) − f ( σ )] Transition rate: c ( x, σ , X ) = c 0 exp � − β U ( x ) � U ( x ): Energy barrier a particle has to overcome in jumping from a lattice site to the gas phase. - Detailed Balance - U ( x ) = U ( x, σ , X ) = � z � = x J ( x − z ) σ ( z ) − h ( X ) . - strong interactions/low temperature → clustering/phase transitions

  14. Why study this system? 0. Many-particle system, related to realistic models, KMC, etc. 1. Strong interactions/low temperature → clustering/phase tran- sitions. ”Complex” landscape: metastability of islands. How CG performs in predicting phase transitions and various rare events? 2. Equilibrium/ Detailed Balance. How CG performs in transient and long time regimes? 3. Numerous analytic benchmark solutions; a variety of mathe- matical physics tools.

  15. Hierarchical coarse-graining of stochastic lattice dynamics K., Majda, Vlachos, Proc. Nat. Acad. Sci. ’03, JCompPhys ’03; K., Vlachos J.Chem.Phys. ’03 Construct a stochastic process for a hierarchy of “mesoscopic” length or time scales. Coarse-grained Monte Carlo algorithm (CGMC). Coarse observable at resolution q : � η t ( k ) = T σ t ( k ) := σ t ( y ) y ∈ D k In general it is non-markovian

  16. Stochastic closures : can we write a new approximating Markov process for η t ? • ”projective dynamics”: Koleshik, Novotny, Rikvold, PRL ’98; coarse rates for total coverage calculated by sampling; Ergodicity : Are the long-time dynamics reproduced? • Errors can contaminate the simulation at long times; wrong switching times in bistable systems: Hanggi et al PRA ’84 (well- mixed systems). • Connections to lumpable Markov processes

  17. Microscopic Coarse-Grained Process Process Lumping CG + error state state ... state 1 1 2 Reconstruction +error Lumping CG + error state 2 Reconstruction +error Lumping Lumping Lumping Lumping + error + error + error + error CG state state ... state m N-1 N Reconstruction Reconstruction Reconstruction Reconstruction +error +error +error +error Microscopic CG equilibria Error equilibria Estimates

  18. 1. CG Schemes at Equilibrium K., Plechac, Rey-Bellet, Tsagkarogiannis, [ M 2 AN, ’07, J. Non. Newt. Fluid Mech. ’08, preprint ] • CG Hamiltonian–Renormalization Group Map : N = mq � H m ( η ) = e − β ¯ e − β H N ( σ ) P N ( d σ | η ) ≡ E [ e − β H N | η ] H (0) • Correction terms around a first ”good guess” ¯ m : m ( η ) − 1 H (0) m ) | η ] , β log E [ e − β ( H N − ¯ H (0) H m ( η ) = ¯ ¯ m = N, N − 1 , ... • Heuristics: Expansion of e ∆ H and log: − E [ ∆ H | η ] 2 + O(( ∆ H ) 3 ) ( ∆ H ) 2 | η � = E [ ∆ H | η ] + E � formal calculations inadequate since: ∆ H ≡ H N − ¯ H (0) = N · O( ǫ ) m H (0) • Rigorous analysis – Cluster expansion : around ¯ m

  19. Systems with short+long-range interactions H N ( σ ) = H l N ( σ ) + H s N ( σ ) ; J : long range potential ∼ H ( l ) N radius L . K : short range potential ∼ H ( s ) with radius S << L . N Examples: Surface processes, epitaxial growth, polymers, etc. CG: approximation of the free energy-landscape. CG prior: ¯ P m ( η ) = P N ( { σ : T σ = η } ) • Splitting strategy: − β � m ( η ) � N ( σ ) − ¯ H l H l m ( η ) ¯ P N ( d σ | η ) e − β ¯ e − β H s H l e − β H N ( σ ) P N ( d σ ) N ( σ ) e = P m ( η )

  20. Case 1: Long- and intermediate-range interactions Approximate CG Hamiltonian: H (0) ( η ) = − 1 J ( k, l ) η ( k ) η ( l ) − 1 � � � � ¯ ¯ ¯ ¯ J (0 , 0) η ( l )( η ( l ) − 1) + h ( l ) η ( l ) 2 2 l ∈ Λ c l ∈ Λ c l ∈ Λ c k � = l M M M H (0) | η � • E � H N − ¯ = 0 Involves two-body CG interaction only: � � ¯ J ( k, l ) η ( k ) η ( l ) = J ( x − y ) σ ( x ) σ ( y ) P N ( d σ | η k , η l ) x ∈ C k ,y ∈ C l Where J ( k, l ) = 1 � � ¯ J ( x − y ) q 2 x ∈ C k y ∈ C l ,y � = x • Analytical version of McCoy-Curro scheme in polymers: � U mcc ( η k , η l ; k − l ) = − 1 e − β H N ( σ ) P N ( d σ | η k , η l ) ¯ β log

  21. Corrections to the Hamiltonian ¯ H (0) �→ Multi-body terms H (0) H (1) H m ( η ) = ¯ ¯ m ( η ) + ¯ m ( η ) + ... � � � H (1) ( η ) = β ¯ [ j 2 k 1 k 2 k 3 ( − E 1 ( k 1 ) E 2 ( k 2 ) E 1 ( k 3 ) + ... k 1 k 2 >k 1 k 3 >k 2 • E r ( k ) ≡ E r ( η ( k )) = (2 η ( k ) /q − 1) r + o q (1) • “Moments” of interaction potential J : � � � j 2 ( J ( x − y ) − ¯ J ( k 1 , k 2 ))( J ( y − z ) − ¯ k 1 k 2 k 3 = J ( k 2 , k 3 )) x ∈ C k 1 y ∈ C k 2 z ∈ C k 3 Computational complexity-Compression of ¯ H (1) • Evaluation of the Hamiltonian: Count Speed-up O( NL d ) Microscopic: H N ( σ ) 1 CG0: ¯ H (0) O( ML d /q d ) O( q 2 d ) H (0) + ¯ CG1: ¯ H (1) O( ML 2 d /q 2 d ) O( q 3 d /L d ) • Decay of J (e.g. Coulomb) �→ J − ¯ J decays faster.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend