mapping and fitting 1d scattering screens
play

Mapping and Fitting 1D Scattering Screens Olaf Wucknitz - PowerPoint PPT Presentation

Mapping and Fitting 1D Scattering Screens Olaf Wucknitz wucknitz@mpifr-bonn.mpg.de Scintillometry 2019 Bonn, 5 November 2019 Mapping and Fitting 1D Scattering Screens Screens often one-dimensional Map to position-position space


  1. Mapping and Fitting 1D Scattering Screens Olaf Wucknitz wucknitz@mpifr-bonn.mpg.de Scintillometry 2019 Bonn, 5 November 2019

  2. Mapping and Fitting 1D Scattering Screens • Screens often one-dimensional • Map to position-position space • One-dimensional fitting • Measuring velocity/curvature • Bonus slides ⋆ dynamic spectrum residuals ⋆ phase retrieval ⋆ deconvolution ⋆ mapping to the sky O. Wucknitz 2019 2/29

  3. Interstellar scattering: geometric delay D s scattering screen observer pulsar θ D d D ds c τ = 1 D = D s D d 2 θ 2 D D ds O. Wucknitz 2019 3/29

  4. Scattering field • subimages (or pixels) at θ j with complex fields V j • reference direction (direct path) θ 0 , maybe moving φ j = π D ν ( θ j − θ 0 ) 2 • geometric phase at observer c φ j = π D ν ( θ 2 or j − 2 θ j · θ 0 ) c V j e i φ j ∑ • total field j 2 � � = ∑ V j e i φ j V j V k e i( φ j − φ k ) � ∑ • total intensity � � � (dynamic spectrum) j j , k O. Wucknitz 2019 4/29

  5. Secondary spectrum φ j = π D ν θ 2 � � • phase difference φ j − φ k j − 2 θ j · θ 0 c φ j = π D θ 2 ν − 2 π D ( θ j · ˙ θ 0 ) j • linear motion: θ 0 = ˙ θ 0 t ν t c c • dynamic spectrum is function of t , ν • two-dimensional Fourier transform � delay, Doppler secondary spectrum � • for wide band: use axes ( ν , ν t ) instead of ( ν , t ) • either transform and rebin, or use DFT in t O. Wucknitz 2019 5/29

  6. Wavelength instead of frequency? ν − 2 π D ( θ · ˙ φ = π D θ 2 θ 0 ) ν t c c − 2 π D ( θ · ˙ = π D θ 2 θ 0 ) t λ λ = π D θ ′ 2 λ − 2 π D ( θ ′ · ˙ θ 0 ) t θ ′ = θ λ scaling with λ : all stays on main parabola, but shifts along it O. Wucknitz 2019 6/29

  7. Dynamic and secondary spectra B1133+16 at 1450, 432 and 327 MHz [ Stinebring et al. (2018), ApJ 870, 82 ] O. Wucknitz 2019 7/29

  8. One-dimensional scattering • secondary spectrum is autocorrelation of field FT • inverting is difficult, not generally unique • equivalent to phase retrieval of dynamic spectrum • well-constrained problem if one-dimensional ⋆ 2d constraints, 1d unknowns ⋆ axes of secondary spectrum: ∗ delay θ 2 1 − θ 2 2 ∗ Doppler θ 1 − θ 2 O. Wucknitz 2019 8/29

  9. Mapping between delay/Doppler and image positions (1) • one-dimensional, modulo constants τ = θ 2 1 − θ 2 • delay 2 • Doppler p = θ 1 − θ 2 � τ � θ 1 = 1 • image positions p + p 2 θ 2 = 1 � τ � p − p 2 • either re-map the secondary spectrum, or directly O. Wucknitz 2019 9/29

  10. Mapping between delay/Doppler and image positions (2) 4 20 2 10 0 0 2 10 2 20 4 =const 1 =const p =const 2 =const 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0 4 2 0 2 4 p 1 O. Wucknitz 2019 10/29

  11. 1-d simulations: Dynamic spectrum (no noise) 312.50 8 312.25 7 312.00 6 311.75 5 freq [MHz] 311.50 4 311.25 3 311.00 2 310.75 1 310.50 0 50 100 150 200 250 300 350 'time' O. Wucknitz 2019 11/29

  12. 1-d simulations: secondary and pos/pos spectrum secondary spectrum pos/pos spectrum 40 6 4 20 2 delay [micro-sec] theta2 [mas] 0 0 2 20 4 40 6 4000 2000 0 2000 4000 6 4 2 0 2 4 6 'Doppler' [arbitrary] theta1 [mas] O. Wucknitz 2019 12/29

  13. Real data: B0834+06 400 20 300 15 200 10 100 5 delay [microsec] 2 [mas] 0 0 5 100 10 200 15 300 20 400 20000 15000 10000 5000 0 5000 10000 15000 20000 20 15 10 5 0 5 10 15 20 Doppler [arbitrary] 1 [mas] [ data from Walter Brisken, Dana Simard ] O. Wucknitz 2019 13/29

  14. Fitting • velocity/curvature from shear • could do eigenvector decomposition of θ - θ spectrum • caveat: noise properties, distortion direct fit to dynamic spectrum! � • model is 1-d complex field V ( θ ), maybe derivatives • iterative fit of all parameters • outer loop for velocity/curvature (or orbit) coherent fit over duration and band! • O. Wucknitz 2019 14/29

  15. 1-d fitting: noisy simulation 312.50 12.5 312.25 10.0 312.00 7.5 5.0 311.75 freq [MHz] 2.5 311.50 0.0 311.25 2.5 311.00 5.0 310.75 7.5 310.50 0 50 100 150 200 250 300 350 'time' O. Wucknitz 2019 15/29

  16. 1-d simulations: secondary and pos/pos spectrum (noisy) secondary spectrum pos/pos spectrum 40 6 4 20 2 delay [micro-sec] theta2 [mas] 0 0 2 20 4 40 6 4000 2000 0 2000 4000 6 4 2 0 2 4 6 'Doppler' [arbitrary] theta1 [mas] O. Wucknitz 2019 16/29

  17. 1-d fitting: scattering field fit true 0.2 0.1 real 0.0 0.1 0.2 15 10 5 0 5 10 15 fit 0.5 true 0.4 0.3 imag 0.2 0.1 0.0 0.1 15 10 5 0 5 10 15 scatter pos [mas] O. Wucknitz 2019 17/29

  18. 1-d fitting: recovered dynamic spectrum 312.50 8 312.25 7 312.00 6 311.75 5 freq [MHz] 311.50 4 311.25 3 311.00 2 310.75 1 310.50 0 50 100 150 200 250 300 350 'time' O. Wucknitz 2019 18/29

  19. 1-d fitting: input without noise 312.50 8 312.25 7 312.00 6 311.75 5 freq [MHz] 311.50 4 311.25 3 311.00 2 310.75 1 310.50 0 50 100 150 200 250 300 350 'time' O. Wucknitz 2019 19/29

  20. B0834+06: velocity fit in blocks (1/4 of bands) 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 velocity deviation [%] 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 0 200 400 0 200 400 0 200 400 0 200 400 0 200 400 freq blocks freq blocks freq blocks freq blocks freq blocks O. Wucknitz 2019 20/29

  21. B0834+06: velocity fit per time block 500 2 250 0 0.15 0.10 0.05 0.00 0.05 0.10 0.15 1000 500 2 0 0.15 0.10 0.05 0.00 0.05 0.10 0.15 500 2 250 0 0.15 0.10 0.05 0.00 0.05 0.10 0.15 1000 500 2 0 0.15 0.10 0.05 0.00 0.05 0.10 0.15 400 200 2 0 0.15 0.10 0.05 0.00 0.05 0.10 0.15 velocity deviation [%] O. Wucknitz 2019 21/29

  22. Summary • direct coherent fit should be optimal, tried 1-d • computationally expensive, subset(s) of data • may need derivatives wrt. time and freq good curvature/velocity precision (formally 0.02 %) • • need more efficiency, e.g. FFT • can include bandpass, intrinsic variability • can include other telescopes and baselines very promising for orbits, Earth’s orbit • • should go towards two-dimensional • what happens within a pixel? O. Wucknitz 2019 22/29

  23. Bonus pages: B0834+64 fits (with derivatives, small part of data) O. Wucknitz 2019 23/29

  24. Observed dynamic spectrum O. Wucknitz 2019 24/29

  25. Fitted spectrum amplitudes O. Wucknitz 2019 25/29

  26. Fitted spectrum amplitude residuals O. Wucknitz 2019 26/29

  27. Fitted spectrum phases O. Wucknitz 2019 27/29

  28. Secondary spectrum of complex model, deconvolved O. Wucknitz 2019 28/29

  29. Mapped to sky O. Wucknitz 2019 29/29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend