magnetic confinement fusion a perfect sand box for
play

Magnetic confinement fusion: a perfect sand box for applied - PowerPoint PPT Presentation

Magnetic confinement fusion: a perfect sand box for applied mathematicians e 1 David Pfefferl 1 The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia ANZIAM meeting, May 14 2019, UWA Outline 1 What is magnetic


  1. Magnetic confinement fusion: a perfect sand box for applied mathematicians e 1 David Pfefferl´ 1 The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia ANZIAM meeting, May 14 2019, UWA

  2. Outline 1 What is magnetic confinement fusion? 2 Stellarator vs Tokamak D.Pfefferl´ e (UWA) Fusion ANZIAM 2 / 23

  3. Nuclear reactions and atomic energy Fission Fusion 3 . 5 MeV 14 . 1 MeV D.Pfefferl´ e (UWA) Fusion ANZIAM 3 / 23

  4. Nuclear reactions and atomic energy Fission Fusion D.Pfefferl´ e (UWA) Fusion ANZIAM 3 / 23

  5. Nuclear binding energy D.Pfefferl´ e (UWA) Fusion ANZIAM 4 / 23

  6. Fusion requires high temperature plasmas separation of electrons from nucleus D.Pfefferl´ e (UWA) Fusion ANZIAM 5 / 23

  7. Plasma is most common state of matter D.Pfefferl´ e (UWA) Fusion ANZIAM 6 / 23

  8. Fusion power and cross-sections Most probable fusion reaction 2 1 H + 3 4 1 H → 2 He + n 14 . 1 MeV 3 . 5 MeV fusion power = n 1 n 2 < σv > E r volume ∼ 0 . 1 − 10[ MW/m 3 ] where E r is energy/reaction, n i ∼ 10 19 [ m − 3 ] density of reactant i and < σv > reaction cross-section D.Pfefferl´ e (UWA) Fusion ANZIAM 7 / 23

  9. Triple product (Lawson criterion) Figure of merit 0 D analysis sustained fusion P fusion ≥ P loss • < σv > = aT 2 , a = 1 . 1 · 10 − 24 [ m 3 /s ] • 50/50 mix of D-T, n D = n T = n/ 2 • quasi-neutrality n e = n and thermal equilibrium T e = T 3 2 n e T e + 3 = W plasma 2 nT • P loss = 3 nT = V τ E τ E τ E n 2 4 aT 2 ≥ 3 nT ⇐ ⇒ τ E ≥ 3 · 10 21 [ keV s/m 3 ] nTτ E � �� � triple product D.Pfefferl´ e (UWA) Fusion ANZIAM 8 / 23

  10. How to increase the triple product ? n T τ E particle source heating power complicated plasma instabilities, transport,. . . empirical scaling τ ISS04 = 0 . 134 a 2 . 28 R 0 . 64 P − 0 . 61 n 0 . 54 B 0 . 84 ι 0 . 41 bigger plasma bigger B -field D.Pfefferl´ e (UWA) Fusion ANZIAM 9 / 23

  11. How to increase the triple product ? D.Pfefferl´ e (UWA) Fusion ANZIAM 9 / 23

  12. Magnetic confinement Charged plasma particles wrap around magnetic field-lines In uniform magnetic field B = B e z , particle motion is z = v || t + z 0 � x � = R ( − ωt ) ρ ⊥ + X y where R ( θ ) is the rotation matrix around e z of angle θ ω = qB/m the Larmor frequency m ρ ⊥ = qB b × v ⊥ is the Larmor radius helical motion along uniform magnetic field D.Pfefferl´ e (UWA) Fusion ANZIAM 10 / 23

  13. Drifts due to non-uniform field “Grad-B” drift when field-strength | B | is spatially varying V B = µ q b × ∇ B B mv 2 where µ = is the “mag- ⊥ 2 B netic moment” upward drift due to non-uniform magnetic field D.Pfefferl´ e (UWA) Fusion ANZIAM 11 / 23

  14. Drifts due to non-uniform field “Curvature” drift when field-lines are bend- ing (curved) mv 2 || V κ = qB b × κ where κ = b · ∇ b is the field- line curvature upward drift due to curved magnetic field D.Pfefferl´ e (UWA) Fusion ANZIAM 12 / 23

  15. Mirror trapping in “magnetic bottles” consequence of magnetic moment and energy conservation m 2 v 2 || + µB = E mv 2 where µ = 2 B is the magnetic moment ⊥ Mirror devices • historically first magnetic confinement devices • suffer from huge losses at both ends D.Pfefferl´ e (UWA) Fusion ANZIAM 13 / 23

  16. Poincar´ e-Hopf theorem justifies torus toroidal fields alone do not provide plasma confinement | B | ∼ 1 /R ⇒ strong vertical “Grad-B” drift D.Pfefferl´ e (UWA) Fusion ANZIAM 14 / 23

  17. Poincar´ e-Hopf theorem justifies torus toroidal fields alone do not provide plasma confinement | B | ∼ 1 /R ⇒ strong vertical “Grad-B” drift D.Pfefferl´ e (UWA) Fusion ANZIAM 14 / 23

  18. Figure-8 stellarator [Spitzer 1958] Rearranging the coils so that “Grad-B” drift averages to zero D.Pfefferl´ e (UWA) Fusion ANZIAM 15 / 23

  19. Confinement optimised stellarators see video of W7X assembly : https://youtu.be/u-fbBRAxJNk D.Pfefferl´ e (UWA) Fusion ANZIAM 16 / 23

  20. 3D makes particle motion complex Lack of symmetry results in chaotic dynamics stellarator 3D fields ⇒ complex motion, detrapping, magnetic wells,. . . D.Pfefferl´ e (UWA) Fusion ANZIAM 17 / 23

  21. Tokamak (Toroidal magnetic chamber) D.Pfefferl´ e (UWA) Fusion ANZIAM 18 / 23

  22. Tokamak (Toroidal magnetic chamber) poloidal fields induced by toroidal current D.Pfefferl´ e (UWA) Fusion ANZIAM 18 / 23

  23. Tokamak (Toroidal magnetic chamber) toroidal + poloidal ≡ twisted magnetic fields ⇒ good confinement strong plasma current ⇒ instabilities (control issues) D.Pfefferl´ e (UWA) Fusion ANZIAM 18 / 23

  24. Particle motion in tokamaks tokamak fields (toroidal + poloidal) ⇒ passing orbits D.Pfefferl´ e (UWA) Fusion ANZIAM 19 / 23

  25. Particle motion in tokamaks tokamak fields (toroidal + poloidal) ⇒ banana orbits D.Pfefferl´ e (UWA) Fusion ANZIAM 19 / 23

  26. Tokamak discharge is limited in time Longest steady-state in tokamaks by Chinese EAST 1 ramp-up phase 2 flat-top • quasi steady-state • heating, particle injection • fusion ignition 3 ramp-down D.Pfefferl´ e (UWA) Fusion ANZIAM 20 / 23

  27. The ITER International Thermonuclear Experimental Reactor • $20bn collaboration: EU, China, India, Japan, Russia, South Korea, CH, US • major radius R = 6 . 2 m, superconducting coils B = 11 . 8 T • first plasma scheduled for 2025, burning plasma 2035 D.Pfefferl´ e (UWA) Fusion ANZIAM 21 / 23

  28. ITER construction progress Cadarache, France D.Pfefferl´ e (UWA) Fusion ANZIAM 22 / 23

  29. ITER construction progress Cadarache, France D.Pfefferl´ e (UWA) Fusion ANZIAM 22 / 23

  30. ITER construction progress Cadarache, France D.Pfefferl´ e (UWA) Fusion ANZIAM 22 / 23

  31. Bibliography I C. Mercier, Nuclear Fusion 4 , 213 (1964). D. Pfefferl´ e, L. Gunderson, S. R. Hudson, and L. Noakes, Physics of Plasmas 25 , 092508 (2018). J. Langer and D. A. Singer, Journal of the London Mathematical Society s2-30 , 512 (1984), ISSN 1469-7750. S. Hudson, C. Zhu, D. Pfefferl´ e, and L. Gunderson, Physics Letters A 382 , 2732 (2018), ISSN 0375-9601. D.Pfefferl´ e (UWA) Fusion ANZIAM 23 / 23

  32. Stellarators achieve confinement through helical winding of magnetic field [Mercier, 1964] • rotating elliptic boundary, e.g. LHD • non-planar magnetic axis, e.g. W7X D.Pfefferl´ e (UWA) Fusion ANZIAM 24 / 23

  33. Optimal “magnetic axis” as elasticae [Pfefferl´ e et al., 2018] Mathematical problem: Find all possible • closed curves • of fixed length • with minimum bending energy • while yielding a fixed amount of integrated torsion Solution via variational approach (least action principle) � � � 2 κ 2 ds 1 S [ γ ] = λ 1 ds + λ 2 τds + λ 3 γ γ γ � �� � � �� � � �� � length torsion bending energy D.Pfefferl´ e (UWA) Fusion ANZIAM 25 / 23

  34. Variational problem has analytic solution Elasticae and Jacobi elliptic functions[Langer and Singer, 1984] One-parameter families of magnetic axis with increasing “winding number” D.Pfefferl´ e (UWA) Fusion ANZIAM 26 / 23

  35. Less planar plasma ⇒ less complex coils [Hudson et al., 2018] ellipticity ǫ = 3 ellipticity ǫ = 1 . 73 winding ι = 0 . 859 winding ι = 1 . 6 coil complexity C = 4 . 87 . coil complexity C = 0 . 674 . D.Pfefferl´ e (UWA) Fusion ANZIAM 27 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend