ma102 multivariable calculus
play

MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora - PowerPoint PPT Presentation

Line integral and Greens Theorem Path independence of line integral MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati R. Barman & S. Bora MA-102 (2017) Line integral and Greens


  1. Line integral and Green’s Theorem Path independence of line integral MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati R. Barman & S. Bora MA-102 (2017)

  2. Line integral and Green’s Theorem Path independence of line integral Example: ��� Evaluate V 2 xdV where V is the region bounded by the planes x = 0 , y = 0 , z = 0 and 2 x + 3 y + z = 6 . Note that V is Type-I: 0 ≤ z ≤ 6 − 2 x − 3 y and ( x , y ) ∈ D , where D is special domain given by 0 ≤ x ≤ 3 and 0 ≤ y ≤ − 2 3 x + 2 . Thus � 6 − 2 x − 3 y ��� �� 2 xdV = ( 2 x dz ) dA V D 0 � 3 � − 2 3 x + 2 = ( 6 − 2 x − 3 y ) 2 xdydx = 9 . 0 0 R. Barman & S. Bora MA-102 (2017)

  3. Line integral and Green’s Theorem Path independence of line integral Example: Find the volume of the region bounded by the surfaces z = x 2 + 3 y 2 and z = 8 − x 2 − y 2 . ��� The volume is V = Ω dzdydx , where Ω is bounded above by the surface z = 8 − x 2 − y 2 and below by the surface z = x 2 + 3 y 2 . Therefore, the limits of z are from z = x 2 + 3 y 2 to z = 8 − x 2 − y 2 . The projection of Ω on xy -plane is the solution of 8 − x 2 − y 2 = x 2 + 3 y 2 ⇒ x 2 + 2 y 2 = 4 . = Therefore the limits of x and y are to be determined by R : x 2 + 2 y 2 = 4 . R. Barman & S. Bora MA-102 (2017)

  4. Line integral and Green’s Theorem Path independence of line integral Example (cont.): � 8 − x 2 − y 2 �� V = z = x 2 + 3 y 2 dzdA R � √ � 2 ( 4 − x 2 ) / 2 ( 8 − 2 x 2 − 4 y 2 ) dydx = − √ − 2 ( 4 − x 2 ) / 2 � √ � 2 ( 4 − x 2 ) / 2 � ( 8 − x 2 ) y − 4 3 y 3 = y = − √ − 2 ( 4 − x 2 ) / 2 √ � 2 √ 4 2 ( 4 − x 2 ) 3 / 2 dx = 8 π = 2 . 3 − 2 R. Barman & S. Bora MA-102 (2017)

  5. Line integral and Green’s Theorem Path independence of line integral Example: Change of order of integration sin x �� Consider the evaluation of integral x dA over the R triangle formed by y = 0 , x = 1 and y = x . If we write R = { ( x , y ) : 0 ≤ y ≤ 1 , y ≤ x ≤ 1 } , then � 1 �� 1 � �� sin x sin x dA = dx dy . x x R 0 x = y The innermost integral is difficult to evaluate. If we change the order of integration, by taking R = { ( x , y ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ x } , then � 1 � x � 1 �� sin x sin x dA = dydx = sin xdx = 1 − cos 1 . x x R 0 y = 0 0 R. Barman & S. Bora MA-102 (2017)

  6. Line integral and Green’s Theorem Path independence of line integral Example: Change of order of integration Find the volume of the region bounded by x + z = 1, y + 2 z = 2 in the first quadrant. Figure : Region bounded by x + z = 1 and y + 2 z = 2, x , y , z ≥ 0 R. Barman & S. Bora MA-102 (2017)

  7. Line integral and Green’s Theorem Path independence of line integral Example: Change of order of integration Draw line parallel to z -axis and note that the upper surfaces are: 2 z + y = 2 over triangle bounded by x = 0 , y = 1 y = 2 x and z = 1 − x over the triangle bounded by y = 0 , x = 1 , y = 2 x . Therefore, � 2 � y / 2 � 1 � 2 x � 1 − x 2 − y � dz dy dx = 2 2 V = dz dx dy + 3 y = 0 x = 0 z = 0 x = 0 y = 0 z = 0 On the other hand, by first drawing the line parallel to x -axis, we get � 1 � 2 − 2 z � 1 − z dx dy dz = 2 V = 3 z = 0 y = 0 x = 0 R. Barman & S. Bora MA-102 (2017)

  8. Line integral and Green’s Theorem Path independence of line integral Example (cont.): Taking the line parallel to y -axis we get � 1 � 1 − x � 2 − 2 z dy dz dx = 2 V = 3 x = 0 z = 0 y = 0 � 4 � 1 � 2 2 cos ( x 2 ) Example: Evaluate I = √ z dx dy dz . z = 0 y = 0 x = 2 y The integral is difficult to evaluate in the given order of integration. We change the order of integration and evaluate the integral: � 4 � 2 � x / 2 2 cos ( x 2 ) √ z I = dy dx dz . z = 0 x = 0 y = 0 � 4 � 2 x cos ( x 2 ) = √ z dx dz = 2 sin 4 . z = 0 x = 0 R. Barman & S. Bora MA-102 (2017)

  9. Line integral and Green’s Theorem Path independence of line integral Change of variable Let T : R 2 → R 2 be C 1 given by T ( u , v ) = ( x ( u , v ) , y ( u , v )) . Then the Jacobian matrix J ( u , v ) of T is given by � � x u x v J ( u , v ) := . y u y v Define the Jacobian of T by ∂ ( x , y ) ∂ ( u , v ) := x u y v − x v y u = det J ( u , v ) . Polar coordinates: Define T ( r , θ ) := ( r cos θ, r sin θ ) . Then � � ∂ ( x , y ) cos θ − r sin θ � � ∂ ( r , θ ) = � = r . � � sin θ r cos θ � R. Barman & S. Bora MA-102 (2017)

  10. Line integral and Green’s Theorem Path independence of line integral Change of variable Let T : R 2 → R 2 be C 1 given by T ( u , v ) = ( x ( u , v ) , y ( u , v )) . Let T − 1 : R 2 → R 2 be the inverse given by T − 1 ( x , y ) = ( u ( x , y ) , v ( x , y )) . Let J ( u , v ) and J ′ ( x , y ) be the Jacobian matrices of T and T − 1 . Applying Chain rule, we have 1 = x u u x + x v v x ; 0 = x u u y + x v v y 0 = y u u x + y v v x ; 1 = y u u y + y v v y . Thus, � � 1 1 0 J ′ ( x , y ) · J ( u , v ) = ⇒ det ( J ′ ( x , y )) = det ( J ( u , v )) . 0 1 R. Barman & S. Bora MA-102 (2017)

  11. Line integral and Green’s Theorem Path independence of line integral Change of variable for double integrals Suppose T is injective and J ( u , v ) is nonsingular. Let D ⊂ R 2 and G := T ( D ) . Suppose that f is integrable on G . Then � � ∂ ( x , y ) � � dA = dxdy = � dudv � � ∂ ( u , v ) � and � � ∂ ( x , y ) �� �� � � f ( x , y ) dxdy = f ( x ( u , v ) , y ( u , v )) � dudv . � � ∂ ( u , v ) � G D Polar coordinates: �� �� f ( x , y ) dxdy = f ( r cos θ, r sin θ ) rdrd θ. G D R. Barman & S. Bora MA-102 (2017)

  12. Line integral and Green’s Theorem Path independence of line integral Example � 1 � 1 − x √ x + y ( y − 2 x ) 2 dA . Evaluate the integral I = 0 0 The given domain is the triangle bounded by x = 0 , y = 0 and x + y = 1. We take the transformation u = x + y and v = y − 2 x . Under this transformation, the given triangle will be transformed into triangle bounded by v = u , v = − 2 u and u = 1. The inverse of this transformation is x = u − v and 3 y = 2 u + v 3 . Hence the Jacobian � � 1 / 3 − 1 / 3 � � J = � = 1 / 3 . � � 2 / 3 1 / 3 � Hence � 1 � u √ I = 1 uv 2 dv du 3 0 v = − 2 u R. Barman & S. Bora MA-102 (2017)

  13. Line integral and Green’s Theorem Path independence of line integral Example Using the transformation u = 2 x + 3 y and v = x − 3 y , find �� e 2 x + 3 y cos ( x − 3 y ) dx dy the value of the integral I = R where R is the region bounded by the parallelogram with vertices ( 0 , 0 ) , ( 1 , 1 / 3 ) , ( 4 / 3 , 1 / 9 ) , ( 1 / 3 , − 2 / 9 ) . Under the given transformations, R will be transformed into the rectangle with vertices ( 0 , 0 ) , ( 3 , 0 ) , ( 3 , 1 ) and ( 0 , 1 ) . Also, | J | = 1 9 . Thus, � 1 � 3 I = 1 e u cos v du dv = 1 9 ( e 3 − 1 ) sin 1 . 9 v = 0 u = 0 R. Barman & S. Bora MA-102 (2017)

  14. Line integral and Green’s Theorem Path independence of line integral Example √ x 2 + z 2 dV where G is the region ��� Evaluate G bounded by the paraboloid y = x 2 + z 2 and y = 4 . We have �� 4 � ��� �� � x 2 + z 2 dy f ( x , y , z ) dV = dxdz , G D x 2 + z 2 where D = { ( x , z ) : x 2 + z 2 ≤ 4 } . Setting x = r cos θ and z = r sin θ for ( r , θ ) ∈ [ 0 , 2 ] × [ 0 , 2 π ] , � 2 π � 2 ��� r ( 4 − r 2 ) rdrd θ = 128 π f ( x , y , z ) dV = . 5 G 0 0 R. Barman & S. Bora MA-102 (2017)

  15. Line integral and Green’s Theorem Path independence of line integral Change of variable for multiple integrals Let D ⊂ R n be open and bounded. Let T : D → R n be such that T is C 1 , injective and the Jacobian J ( U ) is nonsingular for U ∈ D . Let G := T ( D ) and f : G → R be integrable over G . Then � � ∂ ( x 1 , · · · , x n ) � � dx 1 · · · dx n = � du 1 · · · du n � � ∂ ( u 1 , · · · , u n ) � and � � � � ∂ ( x 1 , · · · , x n ) � � f ( X ) dx 1 · · · dx n = f ( X ( U )) � du 1 · · · du n � � ∂ ( u 1 , · · · , u n ) � G D � dX � � � � = f ( X ( U )) � dU . � � dU � D R. Barman & S. Bora MA-102 (2017)

  16. Line integral and Green’s Theorem Path independence of line integral Cylindrical coordinates Consider T ( r , θ, z ) = ( r cos θ, r sin θ, z ) . Then � � cos θ − r sin θ 0 � � ∂ ( x , y , z ) � � ∂ ( r , θ, z ) = sin θ r cos θ 0 = r . � � � � 0 0 1 � � Thus dV = rdrd θ dz and ��� ��� f ( x , y , z ) dV = f ( r cos θ, r sin θ, z ) rdrd θ dz . G D R. Barman & S. Bora MA-102 (2017)

  17. Line integral and Green’s Theorem Path independence of line integral Example x 2 + y 2 dV , where G is the region � ��� Evaluate G bounded by x 2 + y 2 = 1 , z = 4 and z = 1 − x 2 − y 2 . Consider cylindrical coordinates D := { ( r , θ, z ) : ( r , θ ) ∈ [ 0 , 1 ] × [ 0 , 2 π ] , 1 − r 2 ≤ z ≤ 4 } . Then � 1 � 2 π �� 4 � ��� r rdrd θ = 12 π f ( x , y , z ) dV = 1 − r 2 dz 5 . G 0 0 R. Barman & S. Bora MA-102 (2017)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend