cmb spectral distortion computations using the green s
play

CMB Spectral Distortion Computations using the Greens function - PowerPoint PPT Presentation

CMB Spectral Distortion Computations using the Greens function package of CosmoTherm Primordial Distortions Distortion parameter estimation 5 6 temperature-shift, z h > few x 10 4 5 -distortion at z h ~ 3 x 10 -1 ] -1 sr 4 y


  1. CMB Spectral Distortion Computations using the Green’s function package of CosmoTherm Primordial Distortions Distortion parameter estimation 5 6 temperature-shift, z h > few x 10 4 5 µ -distortion at z h ~ 3 x 10 -1 ] -1 sr 4 y -distortion, z h < 10 3 ( ∆ ⇤ ⌘ ∆ � ∆ f ) -1 Hz 2 -2 s -18 W m 1 G th ( ν , z h , 0) [ 10 0 Fiducial values: -1 ∆ f = 1 . 2 ⇥ 10 � 4 y re = 4 ⇥ 10 � 7 -2 f ann , s = 10 � 22 eV sec � 1 -3 f ann , p = 10 � 26 eV sec � 1 1 10 100 1000 ν [GHz] Jens Chluba Cosmology School in the Canary Islands Fuerteventura, Sept 21 st , 2017

  2. Physical mechanisms that lead to spectral distortions Standard sources • Cooling by adiabatically expanding ordinary matter of distortions (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) • Heating by decaying or annihilating relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013) pre-recombination epoch • Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013) • Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013) • Cosmological recombination radiation (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009) „high“ redshifts • „low“ redshifts post-recombination • Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003) • Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999) • SZ-effect from clusters; effects of reionization (Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008) • more exotic processes (Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

  3. Average CMB spectral distortions in Λ CDM 4 10 -6 low redshift y -distortion for y = 2 x 10 relativistic correction to y signal Damping signal 3 10 cooling effect CRR negative branch negative 2 10 branch -1 ] ∆ I [ Jy sr 1 10 PIXIE sensitivity 0 h 10 c n Late time a r b e absorption v i t a g e n negative branch -1 10 1 3 6 10 30 60 100 300 600 1000 3000 ν [GHz]

  4. Set of evolution equations for distortions x = h ν θ e = kT e Photon field kT γ m e c 2  ∂ + K BR e − x e [1 − f (e x e − 1)] + K DC e − 2 x � ∂ f ∂τ ≈ θ e ∂ ∂ xf + T γ [1 − f (e x e − 1)]+ S ( τ , x ) ∂ xx 4 f (1 + f ) x 2 x 3 x 3 T e e λ 3 K DC = 4 α K BR = α X e Z 2 3 π θ 2 i N i ¯ g ff ( Z i , T e , T γ , x e ) , γ I dc g dc ( T e , T γ , x ) √ 6 π θ 7 / 2 2 π e i ( √ ⇣ ⌘ 24 x 2 + 11 16 x 3 + 5 3 2 . 25 g dc ≈ 1 + 3 2 x + 29 12 x 4 π ln for x e ≤ 0 . 37 x e g ff ( x e ) ≈ ¯ , . 1 + 19 . 739 θ γ − 5 . 5797 θ e 1 otherwise Z x 4 f (1 + f ) d x ≈ 4 π 4 / 15 I dc = Ordinary matter temperature = t T ˙ d ρ e d τ = d( T e /T γ ) Q + 4˜ e − ρ e ] − 4˜ ρ γ ρ γ [ ρ eq H DC , BR ( ρ e ) − H t T ρ e . d τ α h θ γ α h α h k α h = 3 2 k [ N e + N H + N He ] = 3 ρ eq e = T eq e /T γ 2 kN H [1 + f He + X e ] R x 4 f (1 + f ) d x R ν 4 f (1 + f ) d ν ≡ h T eq ρ γ = ρ γ /m e c 2 = T γ ˜ e R R 4 x 3 f d x 4 ν 3 f d ν k

  5. CosmoTherm: a new flexible thermalization code • Solve the thermalization problem for a wide range of energy release histories • several scenarios already implemented (decaying particles, damping of acoustic modes) • first explicit solution of time-dependent energy release scenarios • open source code • will be available at www.Chluba.de/CosmoTherm/ • Main reference: JC & Sunyaev, MNRAS, 2012 (arXiv:1109.6552) ν [GHz] 3 0.02 0.1 1 10 100 10 0 10 6 4 -8 z = 4.1 x 10 z = 4.0 x 10 no energy release 8 × 10 6 4 -1 z = 2.4 x 10 z = 1.4 x 10 10 6 6 4 z X = 3 x 10 z = 1.5 x 10 z = 2.4 x 10 End of HI recombination 5 3 z = 8.8 x 10 z = 8.7x 10 5 5 3 z X = 5 x 10 -2 z = 5.2 x 10 z = 5.2x 10 -8 10 5 3 6 × 10 z = 3.1 x 10 z = 3.1x 10 5 5 3 z X = 1 x 10 z = 1.9 x 10 z = 1.9x 10 5 3 -3 z = 1.1 x 10 z = 1.1x 10 10 4 4 z = 200 z X = 5 x 10 z = 6.7 x 10 -8 4 4 × 10 z X = 1 x 10 -4 T ( x ) / T CMB - 1 10 hotter than photons 1 - T e / T z -5 10 -8 2 × 10 -6 10 0 -7 10 -8 10 -8 -2 × 10 -9 10 strong low frequency evolution at low redshifts -8 -10 -4 × 10 10 -11 -4 -3 -2 -1 1 10 20 50 10 2 x 10 10 10 10 3 4 5 6 7 10 10 10 10 10 x z Electron temperature evolution Evolution of distortion

  6. Quasi-Exact Treatment of the Thermalization Problem • For real forecasts of future prospects a precise & fast method for computing the spectral distortion is needed! • Case-by-case computation of the distortion ( e.g., with CosmoTherm, JC & Sunyaev, 2012, ArXiv:1109.6552 ) still rather time-consuming • But: distortions are small ⇒ thermalization problem becomes linear! • Simple solution: compute “response function” of the thermalization problem ⇒ Green’s function approach ( JC, 2013, ArXiv:1304.6120 ) • Final distortion for fixed energy-release history given by Z 1 G th ( ν , z 0 )d( Q/ ρ γ ) d z 0 ∆ I ν ≈ d z 0 0 Thermalization Green’s function • Fast and quasi-exact! No additional approximations! CosmoTherm available at: www.Chluba.de/CosmoTherm

  7. What does the spectrum look like after energy injection? Intensity signal for different heating redshifts 5 6 temperature-shift, z h > few x 10 4 high-z SZ effect 5 µ -distortion at z h ~ 3 x 10 -1 ] 4 y -distortion, z h < 10 3 -1 sr n o i t -2 Hz a z i Response function : l a 2 m r -18 W m e energy injection ⇒ distortion h t l l u f 1 G th ( ν , z h , 0) [ 10 0 -1 hybrid distortion probes -2 time-dependence of energy-release history -3 1 10 100 1000 ν [GHz] JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

  8. µ +y + residual distortion µ -distortion 5 6 temperature-shift, z h > few x 10 4 5 µ -distortion at z h ~ 3 x 10 -1 ] 4 3 y -distortion, z h < 10 -1 sr -2 Hz 2 -18 W m 1 G th ( ν , z h , 0) [ 10 0 -1 -2 -3 y-distortion 1 10 100 1000 ν [GHz] pre- post-recombination epoch µ-y-era HI&He µ-era T-era y-distortion era extra time-slicing at recombination New hybrid era

  9. Simplest spectral shapes ν [ GHz ] 10 100 1000 1 1.8 1.6 Blackbody spectrum 400 1.4 Temperature shift x 1/4 1.2 full thermalization 300 1 x 3 Intensity in units of I 0 ( T ) x 3 n bb ( x ) = 0.8 -1 ] 200 e x − 1 Intensity [ MJy sr 0.6 0.4 100 0.2 0 0 -0.2 -100 -0.4 x 4 e x x 3 G ( x ) = -0.6 (e x − 1) 2 -200 -0.8 -1 -300 -1.2 0.01 0.1 1 10 30 50 x = h ν / kT I 0 = (2 h/c 2 )( kT 0 /h ) 3 ≈ 270 MJy sr − 1

  10. Simplest spectral shapes ν [ GHz ] 10 100 1000 1 1.8 1.6 Blackbody spectrum 400 1.4 Temperature shift x 1/4 y -distortion x 1/4 1.2 equivalent of th-SZ full thermalization 300 1 Intensity in units of I 0 ( T ) 0.8 -1 ] 200 Intensity [ MJy sr 0.6 0.4 100 0.2 0 0 -0.2 y → ν c ≈ 217 GHz -100 -0.4 -0.6 x e x + 1  � -200 x 3 Y SZ ( x ) = x 3 G ( x ) e x − 1 − 4 -0.8 -1 -300 -1.2 0.01 0.1 1 10 30 50 x = h ν / kT I 0 = (2 h/c 2 )( kT 0 /h ) 3 ≈ 270 MJy sr − 1

  11. Simplest spectral shapes ν [ GHz ] 10 100 1000 1 1.8 1.6 Blackbody spectrum 400 1.4 Temperature shift x 1/4 y -distortion x 1/4 1.2 µ -distortion x 1.401 300 1 Intensity in units of I 0 ( T ) π 2  � 18 ζ (3) − 1 0.8 -1 ] 200 x 3 M ( x ) = x 3 G ( x ) Intensity [ MJy sr x 0.6 ≈ 0 . 4561 0.4 100 0.2 0 0 -0.2 -100 -0.4 y → ν c ≈ 217 GHz -0.6 -200 -0.8 µ → ν c ≈ 124 GHz -1 -300 -1.2 0.01 0.1 1 10 30 50 x = h ν / kT I 0 = (2 h/c 2 )( kT 0 /h ) 3 ≈ 270 MJy sr − 1

  12. Energy release histories

  13. Energy release histories for some cases Adiabatic cooling d( Q / ρ γ ) N tot kT γ = � 3 d z 2 ρ γ (1 + z ) #" Ω b h 2 ⇡ � 5 . 71 ⇥ 10 � 10 " (1 � Y p ) # (1 + z ) 0 . 7533 0 . 02225 � � 3 " (1 + f He + X e ) #  T 0 ⇥ 2 . 246 2 . 726 K Annihilation Decay � d( Q/ ρ γ ) N H ( z )(1 + z X ) Ŵ X N H ( z )(1 + z ) 2 + λ d( Q / ρ γ ) � H ( z ) ρ γ ( z ) (1 + z ) exp ( − Ŵ X t ) ≈ ϵ X = f ann � d z d z H ( z ) ρ γ ( z ) � dec Dissipation of acoustic modes Z 1 k 4 d k d( Q / ρ γ ) 2 π 2 P ζ ( k ) e � 2 k 2 / k 2 ⇡ 4 A 2 ∂ z k � 2 D , D d z k min ton damping scale (Weinberg 1971; y A 2 ⇡ (1 + 4 R ν / 15) � 2 ⇡ 0 . 813, k D ⇡ 4 . 048 ⇥ 10 (1 + z ) 3 / 2 Mpc � 1 R ν ⇡ 0 . 409 for N e ff ciency A 2 we have a heating e k min ⇡ 0 . 12 Mpc � 1 , the recombination

  14. Decaying particle scenarios Text y - distortion µ − y transition µ - distortion -6 10 4 f X / z X = 1 eV z X = 2 x 10 4 z X = 8 x 10 effective heating rate (1+ z ) d( Q/ ρ ) / d z 5 z X = 3 x 10 -7 10 -8 10 3 4 5 6 10 10 10 10 redshift z JC & Sunyaev, 2011, Arxiv:1109.6552 JC, 2013, Arxiv:1304.6120

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend