the non linear evolution of cmb non gaussianity and
play

The non-linear evolution of CMB: non-Gaussianity and spectral - PowerPoint PPT Presentation

The non-linear evolution of CMB: non-Gaussianity and spectral distortions Cyril Pitrou Institute of Cosmology and Gravitation, Portsmouth 18 Novembre 2010 Outline Motivations for non-Gaussianity search 1 Theory of perturbations 2 Spectral


  1. The non-linear evolution of CMB: non-Gaussianity and spectral distortions Cyril Pitrou Institute of Cosmology and Gravitation, Portsmouth 18 Novembre 2010

  2. Outline Motivations for non-Gaussianity search 1 Theory of perturbations 2 Spectral distortions 3 The flat-sky approximation 4 Numerical resolution and analytic insight 5 Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 2 / 50

  3. Motivations for non-Gaussianity Motivations for non-Gaussianity search 1 Theory of perturbations 2 Spectral distortions 3 The flat-sky approximation 4 Numerical resolution and analytic insight 5 Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 3 / 50

  4. Motivations for non-Gaussianity From initial conditions to observations k 3 P � k � of radiation density k 3 P � k � of the potential 40 1 30 0.1 20 0.01 10 0.001 10 � 4 0 � 1.0 � 0.5 0.0 0.5 1.0 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.5 Log � k � Log � k � Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 4 / 50

  5. Motivations for non-Gaussianity Harmonic analysis Analysis in the space of Y ℓ m � a ℓ m a ℓ ′ m ′ � = δ ℓℓ ′ δ mm ′ C ℓ Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 5 / 50

  6. Motivations for non-Gaussianity Standard lore of perturbation theory Initial conditions : quantization of the free theory implies Gaussian initial conditions: P ( k ) � Φ( k )Φ( k ′ ) � = δ ( k + k ′ ) P ( k ) Evolution : linearisation of GR. Transfer scheme of perturbations Linear equations, modes k are independent, = ⇒ Gaussianity conserved. P ( k ) → Θ( k , η ) → a ℓ m → C ℓ k 3 P � k � of the potential k 3 P � k � of radiation density 40 40 30 30 20 20 10 10 0 0 → → � 1.0 � 0.5 0.0 0.5 1.0 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.5 Log � k � Log � k � Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 6 / 50

  7. Motivations for non-Gaussianity Motivations for non-Gaussianity search 1 Theory of perturbations 2 Spectral distortions 3 The flat-sky approximation 4 Numerical resolution and analytic insight 5 Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 7 / 50

  8. Motivations for non-Gaussianity non-Gaussianity (NG) Initial conditions non-Gaussian? We want to test the models of inflation with other moments of the statistics. Non-linear dynamics is intrinsic to GR, Statistics of the primordial gravitational potential Φ = Φ ( 1 ) + 1 2 Φ ( 2 ) Gaussian part Φ ( 1 ) and non-Gaussian part Φ ( 2 ) : � Φ( k )Φ( k ′ ) � = δ ( k + k ′ ) P ( k ) � Φ( k 1 )Φ( k 2 )Φ( k 3 ) � = δ ( k 1 + k 2 + k 3 ) f NL F ( k 1 , k 2 , k 3 ) F ( . . . ) = type of non-Gaussianity f NL = its amplitude. Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 8 / 50

  9. Motivations for non-Gaussianity The transfer to temperature fluctuations Θ ℓ m In general Θ ≡ T (Φ) Order 1 Θ ( 1 ) ℓ m ≡ T ℓ m (Φ ( 1 ) ) L Order 2 Θ ( 2 ) ℓ m ≡ T ℓ m (Φ ( 2 ) ) + T ℓ m NL (Φ ( 1 ) Φ ( 1 ) ) L In Fourier space Θ ( 1 ) ( k )Φ ( 1 ) ℓ m ( k ) = T ℓ m L k Θ ( 2 ) ( k )Φ ( 2 ) ℓ m ( k ) = T ℓ m L k NL ( k 1 , k 2 , k )Φ ( 1 ) k 1 Φ ( 1 ) � d 3 k 1 d 3 k 2 δ 3 ( k − k 1 − k 2 ) T ℓ m + k 2 f NL ou T NL ? � Θ ℓ 1 m 1 Θ ℓ 2 m 2 Θ ℓ 3 m 3 � � = 0 because of � Θ ( 1 ) Θ ( 1 ) Θ ( 2 ) � . Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 9 / 50

  10. Theory of perturbations Motivations for non-Gaussianity search 1 Theory of perturbations 2 Spectral distortions 3 The flat-sky approximation 4 Numerical resolution and analytic insight 5 Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 10 / 50

  11. Theory of perturbations Description of perturbations General idea We need to give a precise meaning to δ T ( P ) = T ( P ) − ¯ T ( P ) T ( P ) ¨lives¨ in a perturbed space-time ¯ T ( P ) ¨lives¨ in a background space-time, homogeneous and isotropic Example: metric perturbations d s 2 = a ( η ) 2 � − d η 2 + δ IJ d x I d x J � , d s 2 = a ( η ) 2 � − e 2 Φ d η 2 + 2 B I d x I d η + [ e − 2 Ψ δ IJ + 2 H IJ ] d x I d x J � , Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 11 / 50

  12. Theory of perturbations Correspondence between space-times embedded into 4 + 1 dimensions Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 12 / 50

  13. Theory of perturbations Characteristics of perturbations theory: Get rid of the gauge dependence Gauge-invariant variables A tensor equation is always expressed with such variables Structure of equations in orders of perturbations E [ δ ( 1 ) g , δ ( 1 ) T ] = 0 E [ δ ( 2 ) g , δ ( 2 ) T ] = S [ δ ( 1 ) g , δ ( 1 ) T ] = ⇒ Iterative resolution with gauge-invariant variables Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 13 / 50

  14. Theory of perturbations Describing the matter content The fluid approximation T µν = ( P + ρ ) u µ u ν + Pg µν + Π µν Conservation Eq. ∇ µ T µ 0 = 0 ⇒ ρ ′ + · · · = 0 = Euler Eq. ∇ µ T µ i = 0 ⇒ u ′ i + · · · + ∂ j Π ji = 0 = Problems Equation of state P = w ρ ? Expression and evolution of the anisotropic stress tensor? Multifluid: ∇ µ T µν = F ν � = 0. Expression of forces ? Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 14 / 50

  15. Theory of perturbations Statistical description Distribution function f ( x , p a ) Tetrad in order to define locally a free-fall frame e a . e b ≡ e µ a e ν b g µν = η ab e a . e b ≡ e a ν g µν = η ab µ e b Momentum p Decomposed in energy and direction p = E ( e o + n ) Link to the fluid description D ( p . p ) f ( x , p c ) p a p b d p o d 3 p i � T ab ( x ) ≡ δ 1 ( 2 π ) 3 Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 15 / 50

  16. Theory of perturbations Evolution of the distribution function Boltzmann equation L [ f ] = C [ f ] Liouville operator: Free-fall d s = p c ∇ c f ( x , p a ) + ∂ f ( x , p a ) d p c L [ f ] = d f ∂ p c d s Geodesic equation p b ∇ b p a = d p a d s + ω bac p c p b = 0 Collision operator: Compton scattering on free electrons. Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 16 / 50

  17. Theory of perturbations Why do we also need to describe polarization? Because if radiation has a quadrupole, Compton scattering generates polarisation. Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 17 / 50

  18. Theory of perturbations Description of polarisation by the Stokes parameters Tensorial distribution function  0 0 0 0  If n i = ( 0 , 0 , 1 ) : f ab = 1 0 I + Q U + i V 0     0 U − i V I − Q 0 2   0 0 0 0 Covariant expression f µν ( x , p a ) ≡ 1 2 I ( x , p a ) S µν + P µν ( x , p a ) + i 2 V ( x , p a ) e ρ o ǫ ρµνσ n σ Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 18 / 50

  19. Theory of perturbations Covariant description of polarized radiation Tensor valued distribution function A photon is characterized by p µ and ε µ ( p µ ε µ = 0) F µν ( x , p a ) ≡ 1 2 f ( x , p a ) ε µ ε ν Screen projection Screen projector S µν = g µν + e o µ e o ν − n µ n ν S ν µ ε ν is independent of the electromagnetic gauge choice for the polarization. We thus work with f µν ( x , p a ) = S ρ µ S σ ν F ρσ ( x , p a ) Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 19 / 50

  20. Theory of perturbations Boltzmann equation with polarization � x , p h � L [ f ab ( x , p h )] = C ab L [ f ab ( x , p a )] = 1 2 L [ I ( x , p d )] S ab + L [ P ab ( x , p a )]+ i 2 L [ V ( x , p d )] n c ǫ ocab � d 2 Ω ′ � 3 p h �� � p h � � p ′ h � � = n e σ T p o 4 π S c a S d C ab b f cd − f ab 2 We recover the case with no polarization f ab = 1 I = S ab f ab 2 IS ab or ab S ab = 1 + ( n . n ′ ) 2 = 1 + cos 2 θ S ab C ab ∝ S ′ Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 20 / 50

  21. Theory of perturbations Multipolar expansion Multipoles for scalar functions ( I and V ) ∞ I ( x , p o , n a ) = � I a ℓ ( x , p o ) n a ℓ ℓ = 0 � I a ℓ ( x , p o ) = ∆ − 1 I ( x , p o , n a ) n � a ℓ � d 2 Ω ℓ And for polarisation, E and B modes... ∞ ( a B b ) dc ℓ − 2 ( x , p o ) n c ℓ − 2 � TT � E abc ℓ − 2 ( x , p o ) n c ℓ − 2 − n c ǫ cd � P ab ( x , p a ) = ℓ = 2 � E a ℓ ( x , p o ) M 2 ℓ ∆ − 1 n � a ℓ − 2 P a ℓ − 1 a ℓ � ( x , p o , n a ) d 2 Ω , = ℓ � B a ℓ ( x , p o ) M 2 ℓ ∆ − 1 n b ǫ bd � a ℓ n a ℓ − 2 P a ℓ − 1 � d ( x , p o , n a ) d 2 Ω , = ℓ Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 21 / 50

  22. Theory of perturbations Steps to follow g µν + g ( 1 ) 2 g ( 2 ) µν + 1 Perturb the metric g µν = ¯ 1 µν Perturb the tetrad e µ e µ a + e ( 1 ) µ 2 e ( 2 ) µ + 1 a = ¯ 2 a a ω abc + ω ( 1 ) 2 ω ( 2 ) abc + 1 Perturb the connections ω abc = ¯ 3 abc Find the perturbed geodesic equations 4 Compute the perturbed Liouville operator 5 Compute the Thomson scattering for each electron 6 Sum over the electrons distribution to obtain the Collision tensor in 7 full generalities Expand it in perturbations 8 Take the multipoles I a ℓ E a ℓ and B a ℓ of the Boltzmann equation 9 10 Solve it or integrate it numerically Cyril Pitrou (ICG, Portsmouth) 18 Novembre 2010 22 / 50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend