ma102 multivariable calculus
play

MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora - PowerPoint PPT Presentation

MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati R. Barman & S. Bora MA-102 (2017) Surfaces 1 Locus of a point moving in space with 2 degrees of freedom. 2 Level curve of a scalar field


  1. MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati R. Barman & S. Bora MA-102 (2017)

  2. Surfaces 1 Locus of a point moving in space with 2 degrees of freedom. 2 Level curve of a scalar field F : D ⊆ R 3 → R . For example, x 2 + y 2 + z 2 = c , z = x 2 + y 2 , etc. 3 Sometimes surfaces can be described by { ( x , y , z ) : z = f ( x , y ) , ( x , y ) ∈ D } . This is called explicit representation. 4 The unit sphere is a union of two such explicit representations: 1 − x 2 − y 2 ) : x 2 + y 2 ≤ 1 } � { ( x , y , z = 1 − x 2 − y 2 ) : x 2 + y 2 ≤ 1 } � ∪ { ( x , y , z = − R. Barman & S. Bora MA-102 (2017)

  3. Parametric representation of a surface A surface may also be described by x = X ( u , v ) , y = Y ( u , v ) , z = Z ( u , v ) , where u , v ∈ D and D is a connected subset of the uv -plane, for example, plane region like circle, rectangle, etc. Definition: A continuous function R : D ⊂ R 2 → R 3 is called a parametric surface in R 3 . The image S := R ( D ) is called a geometric surface in R 3 . If the surface has an explicit representation given by a continuous function z = f ( x , y ) , ( x , y ) ∈ D , then R ( x , y ) = x ˆ i + y ˆ j + f ( x , y ) ˆ k is a parametric representation. R. Barman & S. Bora MA-102 (2017)

  4. Parametric representation of a sphere of radius a If we take spherical coordinates, then x = X ( θ, φ ) = a sin φ cos θ, y = Y ( θ, φ ) = a sin φ sin θ, z = Z ( θ, φ ) = a cos φ, where 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2 π . This gives a parametric representation of the sphere: R ( φ, θ ) = a sin φ cos θ ˆ i + a sin φ sin θ ˆ j + a cos φ ˆ k , where 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2 π. R. Barman & S. Bora MA-102 (2017)

  5. Parametric representation of a cone We find a parametrization of the cone x 2 + y 2 , 0 ≤ z ≤ 1 � z = Here cylindrical coordinates provide everything we need. x 2 + y 2 = r . � x ( r , θ ) = r cos θ, y ( r , θ ) = r sin θ, z = Also 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2 π . So the required parametrization is j + r ˆ R ( r , θ ) = r cos θ ˆ i + r sin θ ˆ k , 0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2 π. R. Barman & S. Bora MA-102 (2017)

  6. Parametric representation of a cylinder We find a parametrization of the cylinder x 2 + ( y − 3) 2 = 9 , 0 ≤ z ≤ 5. We take cylindrical coordinates: x ( r , θ ) = r cos θ, y ( r , θ ) = r sin θ, z = z . Substituting in x 2 + ( y − 3) 2 = 9 we get r 2 − 6 r sin θ = 0. Therefore, r = 6 sin θ . Thus, we have the following parametrization: i + 6 sin 2 θ ˆ R ( θ, z ) = 3 sin 2 θ ˆ j + z ˆ k , where 0 ≤ θ ≤ π, 0 ≤ z ≤ 5 . R. Barman & S. Bora MA-102 (2017)

  7. Smooth parametric surface Let R : D ⊂ R 2 → R 3 be a parametric surface and let R ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v )) . Then the partial derivatives of R , when exist, are given by R u = ( x u , y u , z u ) and R v = ( x v , y v , z v ) . The parametric surface S = R ( D ) is said to be smooth if R is C 1 and R u × R v � = 0 for ( u , v ) ∈ D . Assumptions: ❼ D is connected ❼ R is injective except possibly on the boundary of D ❼ R is C 1 and R u × R v � = 0 for ( u , v ) ∈ D . R. Barman & S. Bora MA-102 (2017)

  8. Singular Points A point on S is called a singular point if S fails to be smooth at that point. That is, either R is not C 1 and/or R u × R v = 0 at that point. 1 − x 2 − y 2 ˆ The parametrization R ( x , y ) = x ˆ i + y ˆ � j + k of the interior of the upper hemisphere of the unit sphere has no singular point. We have � ∀ ( x , y ) s.t x 2 + y 2 < 1 . � R x × R y � = 1 + f 2 x + f 2 y � = 0 , (0 , 0 , a ) is the only singular point of the hemisphere w.r.t. the parametrization: R ( φ, θ ) = a sin φ cos θ ˆ i + a sin φ sin θ ˆ j + a cos φ ˆ k , where 0 ≤ φ ≤ π/ 2 , 0 ≤ θ ≤ 2 π. R. Barman & S. Bora MA-102 (2017)

  9. Surface area Let R : D ⊂ R 2 → R 3 be a smooth parametric surface. Let ( u 0 , v 0 ) ∈ D and consider the rectangle T formed by the vertices ( u 0 , v 0 ) , ( u 0 + △ u , v 0 ) , ( u 0 , v 0 + △ v ) , ( u 0 + △ u , v 0 + △ v ). Each side of the rectangle T maps to a curve on the surface S . Let C 1 and C 2 be the curves corresponding to the sides v = v 0 and u = u 0 , respectively. These two curves meet at P 0 = R ( u 0 , v 0 ). Drawing the other two curves determined by v = v 0 + △ v and u = u 0 + △ u , we find that the rectangle T is mapped to the portion of the surface bounded by these four curves. We denote the surface area of this curved patch by △ σ uv . R. Barman & S. Bora MA-102 (2017)

  10. Surface area R u ( u 0 , v 0 ) is tangent to C 1 at P 0 and R v ( u 0 , v 0 ) is tangent to C 2 at P 0 , where P 0 = R ( u 0 , v 0 ). We approximate the surface area △ σ uv by the area of the parallelogram on the tangent plane whose sides are determined by the vectors △ u · R u ( u 0 , v 0 ) and △ v · R v ( u 0 , v 0 ). �� Hence the surface area of S denoted by S d σ is �� �� d σ = � R u × R v � dudv . S D Example: Find the surface area of the hemisphere a 2 − x 2 − y 2 } , a > 0 . � S := { ( x , y , z ) : z = R. Barman & S. Bora MA-102 (2017)

  11. Surface area Solution: The parametric representation of the surface is R ( φ, θ ) = a sin φ cos θ ˆ i + a sin φ sin θ ˆ j + a cos φ ˆ k , where φ ∈ [0 , π/ 2] , θ ∈ [0 , 2 π ]. Now, � � i j k � � � � R φ × R θ = a cos θ cos φ a sin θ cos φ − a sin φ � � � � − a sin θ sin φ a cos θ sin φ 0 � � a 2 cos θ sin 2 φ ˆ i + a 2 sin θ sin 2 φ ˆ j + a 2 sin φ cos φ ˆ = k Thus, � R φ × R θ � = a 2 sin φ. Hence the surface area is � π/ 2 � 2 π � π/ 2 � 2 π a 2 sin φ d φ d θ = 2 π a 2 . � R θ × R φ � d φ d θ = φ =0 θ =0 φ =0 θ =0 R. Barman & S. Bora MA-102 (2017)

  12. Surface area of a surface z = f ( x , y ) Let f : D ⊆ R 2 → R . Then, we consider the parametrization R ( x , y ) = x ˆ i + y ˆ j + f ( x , y ) ˆ k , ( x , y ) ∈ D . We have � � i j k � � = − f x ˆ i − f y ˆ j + ˆ � � R x × R y = 1 0 f x k . � � � � 0 1 f y � � Hence, �� �� � 1 + f 2 x + f 2 d σ = y dxdy S D R. Barman & S. Bora MA-102 (2017)

  13. Figure : Surface element R. Barman & S. Bora MA-102 (2017)

  14. Examples Find the surface area of the surface of the cone x 2 + y 2 , 0 ≤ z ≤ 1 . � z = Solution (method-1): We consider the following smooth parametrization of the cone: R ( r , θ ) = r cos θ ˆ i + r sin θ ˆ j + r ˆ k , 0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2 π. We find that R r × R θ = − r cos θ ˆ i − r sin θ ˆ j + r ˆ k and √ r 2 cos 2 θ + r 2 sin 2 θ + r 2 = � � R r × R θ � = 2 r . Therefore, � 2 π � 1 √ √ Surface Area = 2 rdrd θ = π 2 0 0 R. Barman & S. Bora MA-102 (2017)

  15. Examples x 2 + y 2 . We � Solution (method-2): Here z = f ( x , y ) = consider the following smooth parametrization of the cone: R ( x , y ) = x ˆ i + y ˆ j + f ( x , y ) ˆ k , ( x , y ) ∈ D , where D = { ( x , y ) ∈ R 2 : x 2 + y 2 ≤ 1 } . x y Now, f x = x 2 + y 2 and f y = x 2 + y 2 . Therefore, � � �� � Surface Area = 1 + f 2 x + f 2 y dxdy D √ √ �� = 2 dxdy = 2 π. x 2 + y 2 ≤ 1 R. Barman & S. Bora MA-102 (2017)

  16. Surface area and Jacobian determinants  + Z ( u , v ) ˆ Let R ( u , v ) = X ( u , v )ˆ ı + Y ( u , v ) ˆ k , ( u , v ) ∈ D be a smooth parametrization of a surface S . We have � ˆ � ˆ ı  ˆ k � � � � R u × R v = X u Y u Z u � � � � X v Y v Z v � � � � � � � � Y u Z u Z u X u X u Y u � ˆ � � � � � � = � ˆ ı + � ˆ  + k � � � � � � Y v Z v Z v X v X v Y v � � � ∂ ( Y , Z ) ı + ∂ ( Z , X )  + ∂ ( X , Y ) ˆ = ∂ ( u , v ) ˆ ∂ ( u , v ) ˆ k ∂ ( u , v ) Thus, the surface area is �� ∂ ( Y , Z ) � 2 � 2 � 2 �� �� � ∂ ( Z , X ) � ∂ ( X , Y ) d σ = + + dudv . ∂ ( u , v ) ∂ ( u , v ) ∂ ( u , v ) S D R. Barman & S. Bora MA-102 (2017)

  17. Implicit surfaces Let S be a surface implicitly given by F ( x , y , z ) = c , where F is C 1 . We assume that either ∇ F • ˆ k � = 0 or ∇ F • ˆ j � = 0 or ∇ F • ˆ i � = 0 on S . Suppose that ∇ F • ˆ k � = 0, that is, F z � = 0 on S . Then we can write the surface S explicitly as z = h ( x , y ) (due to Implicit function theorem). Now, we take the parametrization of S given by  + h ( x , y ) ˆ R ( x , y ) = x ˆ ı + y ˆ k . Then, ı − F x ı + h x ˆ ˆ R x = ˆ k = ˆ k F z  − F y  + h y ˆ ˆ R y = ˆ k = ˆ k . F z R. Barman & S. Bora MA-102 (2017)

  18. Implicit surfaces Hence,  + F z ˆ k = F x ˆ ı + F y ˆ F x ı + F y k  + ˆ R x × R y = ˆ ˆ F z F z F z ∇ F ∇ F = = ∇ F • ˆ F z k Thus, the surface area is given by � � �� �� ∇ F � � d σ = � dxdy , � � ∇ F • ˆ k � S D where D is the projection of the surface on the xy -plane. Remark: If F x = ∇ F • ˆ ı � = 0, then we have to take projection of the surface on the yz -plane. If F y � = 0, then we take projection of the surface on the xz -plane. R. Barman & S. Bora MA-102 (2017)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend