local inversions in ultrasound modulated op5cal tomography
play

LocalInversionsinUltrasound ModulatedOp5calTomography GuillaumeBal - PowerPoint PPT Presentation

LocalInversionsinUltrasound ModulatedOp5calTomography GuillaumeBal ShariMoskow UltrasoundModulatedOp5cal Tomography(AcoustoOp5cs) Acous5cwavesareemiDedwhichperturbthe


  1. Local
Inversions
in
Ultrasound
 Modulated
Op5cal
Tomography
 Guillaume
Bal
 Shari
Moskow


  2. Ultrasound
Modulated
Op5cal
 Tomography
(Acousto‐Op5cs)
 • Acous5c
waves
are
emiDed
which
perturb
the
 op5cal
proper5es
of
the
medium
 • Light
propaga5ng
through
the
medium
is
used
 to

recover
the
original
op5cal
parameters
 • Model
by
G.
Bal
and
J.
C.
Schotland
Phys.
Rev.
 LeDers,
2010.



  3. Op5cal
proper5es
perturbed
by
acous5c
waves
 σ ǫ = σ + ǫ (2 β + 1) cos( k · x + φ ) γ ǫ = γ + ǫ (2 β − 1) cos( k · x + φ ) Lineariza5on
wrt
epsilon
and
some
manipula5on
yields
 boundary
data
 � (2 β − 1) γ ( ∇ φ ) 2 + (2 β + 1) σφ 2 � � Σ ( k, φ ) = cos( k · x + φ ) Ω Which
is
the
Fourier
transform
of
some
internal
data


  4. Mathema5cal
Problem
 Given
internal
data
of
the
form
 H ij ( x ) = γ ∇ u i · ∇ u j + ησ u i u j , where







is
a
known
fixed
constant
and








 η −∇ · γ ∇ u j + σ u j 0 in Ω = f j on ∂ Ω u j = γ Find










and





 σ

  5. Previous
work
 • Recovery
of








only,

 σ = 0 γ Capdeboscq,
Fehrenback,
De
Gournay,
Kavian
(n=2)
 Bal,
Bonne5er,
Monard,
Triki
(n=3)
 Bal,
Monard
(n>=4)
 Kuchment,
Kunyansky
 Kuchment,
Steinhauer‐

pseudo‐differen5al
calculus
 Ammari,
Capdeboscq,
Triki
2012‐
separa5on
of
terms


  6. Assume
we
have
some
known
 background






and







.
 γ 0 σ 0 γ γ 0 + δγ = σ σ 0 + δσ = u 0 j + δ u j = u j Where
the
background
solu5ons
sa5sfy
 −∇ · γ 0 ∇ u 0 j + σ 0 u 0 0 in Ω = j u 0 f j on ∂ Ω = j

  7. L 0 := −∇ · γ 0 ∇ + σ 0 δ u j = L − 1 0 ( ∇ · δγ ∇ u 0 j − δσ u 0 j )

  8. linearized
problem
 δγ ∇ u 0 i · ∇ u 0 j + γ 0 ∇ δ u i · ∇ u 0 j + γ 0 ∇ u 0 i · ∇ δ u 0 dH ij = j + ηδσ u 0 i u 0 j + ησ 0 δ u i u 0 j + ησ 0 u 0 i δ u j δ u j , δγ , δσ 
Really
have
3
unknowns
here









 L 0 δ u j = ∇ · δγ ∇ u 0 j − δσ u 0 j 
But
they
are
coupled

 δ u j One
approach:
solve
for










and
subs5tute
back
in


  9. Take
Laplacian
of
data

 ∆ dH ij ( δγ , δσ ) = G ij ( δγ , δσ ) + ∆ T ij ( δγ , δσ ) , where T ij is compact, and j ) s : D 2 δγ + η u 0 G ij ( δγ , δσ ) = ∇ u 0 i · ∇ u 0 j ∆ δγ − 2( ∇ u 0 i ⊗ ∇ u 0 i u 0 j ∆ δσ

  10. Simplest
case

 • Case
where
n=2
and


 γ 0 = 1 , σ 0 = 0 • Take



















to
get

 u 0 = 1 dH 00 ( δγ , δσ ) = ηδσ • Eliminate









 δσ • Take

 u 0 i = x i

  11. then
 ∆ ˜ dH 11 = ( ∂ 2 x 2 − ∂ 2 x 1 ) ∆ ˜ dH 12 = − 2 ∂ x 1 x 2 ∆ ˜ dH 22 = ( ∂ 2 x 1 − ∂ 2 x 2 ) Separately
get
hyperbolic,
not
ellip5c
 Together
ellip5c
as
a
redundant
system
 Hard
to
invert
because
redundant



  12. but
consider
 Γ T Γ = ( ∆ d ˜ � H ij ) 2 ij Γ T Γ = 2 ∂ 4 x 1 + 2 ∂ 4 x 2 Which
is
ellip5c.



  13. And
for


 n ≥ 3 n ∆ d ˜ � H ii = ( n − 2) ∆ i =1 Which
we
can
invert


  14. For
general




this
doesn’t
work
 σ 0 So
let
us
consider
for
general


 γ 0 , σ 0 The
highest
order
part
 j ) s : D 2 δγ + η u 0 G ij ( δγ , δσ ) = ∇ u 0 i · ∇ u 0 j ∆ δγ − 2( ∇ u 0 i ⊗ ∇ u 0 i u 0 j ∆ δσ Define
 ∇ u 0 θ i = i | ∇ u 0 i |

  15. Then
we
are
interested
in
the
system
 A ij δγ + B ij δσ = F ij , where
 A ij = θ i · θ j ∆ − 2( θ i ⊗ θ j ) s : ∇ ⊗ ∇ , and
 u i B ij = η d i d j ∆ , d i = | ∇ u i | .

  16. Define
the
operator

 � A ij � B ij Γ = With
a
row
for
each
pair
(i,j)


 We
want
to
show
this
operator
is
ellip5c
so
that
we
can
get
a
parametrix,
or

 Inver5bility
of
the
highest
order
part.
 Construc5on
of
parametrices
for
similar
problems
in
 Kuchment
and
Steinhauer
for
one
coefficient.


  17. Consider
the
2x2
system
 � δγ � Γ T Γ = Γ T F. δσ ij A T ij A T �� � � ij A ij ij B ij Γ T Γ = . ij B T ij B T � � ij A ij ij B ij

  18. Using
symbols,
the
system
is
inver5ble
 when
we
always
have
at
least
one
of

 the
sub‐determinants
not
vanishing

 � A ij � B ij Det A kl B kl

  19. These
determinants
are
zero
when

 ( θ i · θ j − 2 θ i · ˆ ξθ j · ˆ ξ ) d p d q = ( θ p · θ q − 2 θ p · ˆ ξθ q · ˆ ξ ) d i d j ∀ ( i, j, p, q ) . ∇ u 0 u 0 θ i = i d i = i | ∇ u 0 i | | ∇ u 0 i |

  20. Thanks
to
Gunther
Uhlmann
and
CGOs
 e ρ · x = u ρ e ρ r · x (cos ρ I · x + i sin ρ I · x ) = e ρ r · x [( ρ r cos ρ I · x − ρ I sin ρ I · x ) + i ( ρ r sin ρ I · x + ρ I cos ρ I · x )] = ∇ u ρ Which
gives,
by
taking
real
and
imaginary
parts
 � � � � cos ρ I · x sin ρ I · x θ 1 = θ 2 = − sin ρ I · x cos ρ I · x d 1 = cos ρ I · x d 2 = sin ρ I · x | ρ | | ρ |

  21. (1 − 2( θ 1 · ξ ) 2 ) d 2 (1 − 2( θ 2 · ξ ) 2 ) d 2 = 2 1 − 2 θ 1 · ξθ 2 · ξ d 2 (1 − 2( θ 1 · ξ ) 2 ) d 1 d 2 = 1 − 2 θ 1 · ξθ 2 · ξ d 2 (1 − 2( θ 2 · ξ ) 2 ) d 1 d 2 = 2 Which
is
 ( s 2 − c 2 ) d 2 ( c 2 − s 2 ) d 2 = 2 1 − 2 csd 2 ( s 2 − c 2 ) d 1 d 2 = 1 − 2 csd 2 ( c 2 − s 2 ) d 1 d 2 = 2 (1) ⇒ s 2 − c 2 = 0 (2) or (3) ⇒ sc = 0

  22. • But
ellip5city
doesn’t
guarantee
injec5vity
 • Need
injec5vity
for
extensions
to
nonlinear
 problem


  23. One
approach:
view
as
a
differen5al
 operator
with
its
natural
square
 bilinear
form
 �� v � v � v � v � �� � � := � B Ω Γ · Γ , w w w w 
on

 H 2 0 ( Ω ) × H 2 0 ( Ω )

  24. Varia5onal
fomula5on:

find

 ( δγ , δσ ) ∈ H 2 0 ( Ω ) × H 2 0 ( Ω ) Such
that

 �� δγ �� δγ � v � v � v � �� � �� � � Ω F · Γ T B , + L , = δσ δσ w w w ∀ ( v, w ) ∈ H 2 0 ( Ω ) × H 2 0 ( Ω ) Where
L
is
a
lower
order
operator
 (generally
nonlocal)



  25. • B
is
clearly
bounded
above
on
 H 2 0 ( Ω ) × H 2 0 ( Ω ) • Know
ellip5c,
can
get
coercivity
bounds
 explicitly
in
some
cases


  26. Case
n=2,
constant




 σ 0 , γ 0 • Have
the
two
background
solu5ons
 q σ 0 γ 0 x 1 u 0 1 = e q σ 0 γ 0 x 2 , u 0 2 = e • Which
give
 � γ 0 θ i = e i and d i = σ 0 .

  27. Γ =( A ij B ij ) Corresponding
to
(i,j)=(1,1),(1,2),(2,2)
where

 A 11 = ∂ yy − ∂ xx A 12 = − 2 ∂ xy A 22 = ∂ xx − ∂ yy B := B 11 = B 12 = B 22 = η γ 0 ∆ . σ 0

  28. �� v � v 2( v xx ) 2 + 2( v yy ) 2 + 3 η 2 γ 2 � �� � ( ∆ w ) 2 − 2 η γ 0 0 = v xy ∆ w B , σ 2 w w σ 0 Ω 0 Use
Cauchy’s
inequality
 xy + ( ∆ w ) 2 | v xy ∆ w | ≤ ǫ v 2 4 ǫ 

and
integra5on
by
parts
 � Ω v 2 � Ω v xx v yy xy =

  29. �� v � v � �� B , w w � 2 − | η | γ 0 � � � � � σ 0 ǫ � 3 η 2 γ 2 � v xx v xx � ( ∆ w ) 2 · + 0 − | η | γ 0 ≥ 0 σ 2 − | η | γ 0 2 Ω 2 ǫσ 0 σ 0 ǫ v yy v yy σ 0 choose
 To
get
 ǫ = γ 0 | η | . γ 2 L 2 + 3 ≥ � v xx � 2 L 2 + � v yy � 2 0 η 2 � ∆ w � 2 0 L 2 . σ 2 2

  30. • If
we
have
injec5vity,
this
means
that
the
 linearized
solu5ons
 � ˆ 0 ( Ω ) , � ˆ δγ � H 2 δσ � H 2 0 ( Ω ) ≤ C � F � L 2 ( Ω ) • 
and
we
have
explicit
knowledge
of
C


  31. • System
is
ellip5c‐
but
don’t
yet
know
if
 injec5ve.

 • But
since
problem
is
square:
 � 0 � v � v � v � � � � � Ω Γ · Γ = 0 ⇒ Γ = 0 w w w

  32. Case
where
domain
is
small
 • 
If
the
domain
is
small,












and








are
 u 0 ∇ u 0 i i close
to
constants
 δγ ∇ u 0 i · ∇ u 0 j + γ 0 ∇ δ u i · ∇ u 0 j + γ 0 ∇ u 0 dH ij ( δγ , δσ ) = i · ∇ δ u j + ηδσ u 0 i u 0 j + ησ 0 δ u i u 0 j + ησ 0 u 0 i δ u j So
when
we
take
L_0
of
data,
lower
order
terms
 are
differen5al
operators.


 L 0 = −∇ · γ 0 ∇ + σ

  33. • 
if







is
a
differen5al
operator
and
 Γ � v � � 0 � Γ = . 0 w v = ∂ v ∂ν = w = ∂ w • 

since




















































 ∂ν = 0 on ∂ Ω We
can
get
that

























from
Holmgren’s
 v = w = 0 theorem



Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend