living beyond your means
play

Living beyond your means Extracting Response Time Densities and - PowerPoint PPT Presentation

Living beyond your means Extracting Response Time Densities and Quantiles from Stochastic Models Susanna Au-Yeung, Jeremy Bradley, Nicholas Dingle, Tony Field, Peter Harrison, William Knottenbelt , Aleksandar Trifunovic, Helen Wilson email: {


  1. Living beyond your means Extracting Response Time Densities and Quantiles from Stochastic Models Susanna Au-Yeung, Jeremy Bradley, Nicholas Dingle, Tony Field, Peter Harrison, William Knottenbelt , Aleksandar Trifunovic, Helen Wilson email: { wjk,aesop } @doc.ic.ac.uk

  2. Summary (NOT!) There are three surefire ways to live beyond your means: • “Invest” (a.k.a. lose) your money in the stockmarket. • Play Texas Hold ’em poker for money. • Go out frequently on an academic salary. 1 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  3. Motivation • Fast response times are important for almost all computer- communication and transaction processing systems. • It is important to assess the performance of these systems ahead of implementation via formal models (e.g. Petri nets ). • Traditional analysis methods compute steady state behaviour. • But this is inadequate to compute response-time densities and quantiles (percentiles). 2 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  4. Response Times and QoS • 90th/95th percentile response time is a good indicator of client-perceived quality of service in SLAs/benchmarks, e.g.: - Ambulance should be on scene in under 13 mins 90% of time. - 95% of text messages should be delivered in under 3 seconds. - TPC-C OLTP benchmark requirements: 90th percentile Min. Mean of Transaction Minimum Minimum response time Think Time Type % of mix Keying Time constraint Distribution Payment 43.0 3 sec. 5 sec. 12 sec. Order-Status 4.0 2 sec. 5 sec. 10 sec. Stock-Level 4.0 2 sec. 20 sec. 5 sec. 3 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  5. Aim p4 t5 (v) t3 t4 (2r) p5 ⇒ p3 t1 (r) t2 (3r) p1 p2 4 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  6. Petri nets • A simple, graphical formalism for modelling concurrent sys- tems (including hardware, software, communication, manu- facturing, chemical and biological systems). • Natural expression of synchronisation. • Stochastic Petri net models support both: - correctness analysis (deadlock, liveness, boundedness) - performance analysis (via Markov/semi-Markov chains) within a single modelling framework. 5 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  7. Petri nets (example) L CO2 photosynthesis metabolism C6H12O6 H20 sunrise O2 dark light sunset L 6 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  8. Petri nets (example) L CO2 photosynthesis metabolism C6H12O6 H20 sunrise O2 dark light sunset L 7 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  9. Petri nets (example) L CO2 photosynthesis metabolism C6H12O6 H20 sunrise O2 dark light sunset L 8 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  10. Petri nets (example) L CO2 photosynthesis metabolism C6H12O6 H20 sunrise O2 dark light sunset L 9 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  11. Petri nets (example) L CO2 photosynthesis metabolism C6H12O6 H20 sunrise O2 dark light sunset L 10 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  12. Petri nets (example) L CO2 photosynthesis metabolism C6H12O6 H20 sunrise O2 dark light sunset L 11 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  13. Stochastic Petri nets • Attach exponentially distributed firing delays on transitions f ( t ) = λe − λt F ( t ) = 1 − e − λt • Competing transitions t 1 (rate λ 1 ) and t 2 (rate λ 2 ) race: � ∞ �� x λ 1 � 0 λ 1 e − λ 1 y dy λ 2 e − λ 2 x dx = P [ t 1 fires] = λ 1 + λ 2 0 • Sojourn time in marking ∼ Exp( λ 1 + λ 2 ): P [min( χ 1 , χ 2 ) ≤ t ] = 1 − P [ χ 1 > t and χ 2 > t ] 1 − e − ( λ 1 + λ 2 ) t = 12 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  14. Markov Processes • State holding times are exponentially distributed. • Transition probabilities depend only current state. • Hence underlying state-transition behaviour of an SPN is iso- morphic to a Continuous Time Markov Chain . • Stochastic Process Algebras and closed Queueing networks map onto Markov Chains in a similar way. • Response time analysis will proceed at Markov Chain level. 13 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  15. CTMC (example) L t1 (1) p1 p2 (2,0,0) t3 (3) t2 (2) p3 L 14 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  16. CTMC (example) L t1 (1) p1 p2 (2,0,0) 1 (1,1,0) t3 (3) t2 (2) p3 L 15 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  17. CTMC (example) L t1 (1) p1 p2 (2,0,0) 1 (1,1,0) t3 (3) t2 (2) 1 2 (0,2,0) (1,0,1) p3 L 16 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  18. CTMC (example) L t1 (1) p1 p2 (2,0,0) 1 (1,1,0) t3 (3) t2 (2) 1 2 (0,2,0) (1,0,1) p3 L 17 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  19. CTMC (example) L t1 (1) p1 p2 (2,0,0) 1 (1,1,0) t3 (3) t2 (2) 1 2 (0,2,0) (1,0,1) 2 p3 (0,1,1) L 18 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  20. CTMC (example) L t1 (1) p1 p2 (2,0,0) 1 3 (1,1,0) t3 (3) t2 (2) 1 2 3 (0,2,0) (1,0,1) 1 2 3 p3 (0,1,1) (0,0,2) 2 L 19 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  21. CTMC (example) L t1 (1) p1 p2 1 (2,0,0) 1 2 3 4 5 6 1 −1 1 1 3 2 −3 1 2 (1,1,0) 2 3 −2 2 t3 (3) t2 (2) Q= 1 2 4 3 −4 1 3 3 (0,2,0) 4 (1,0,1) 5 3 −5 2 1 6 3 −3 2 3 p3 (0,1,1) (0,0,2) 2 5 6 L 20 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  22. CTMC (example) L t1 (1) p1 p2 1 (2,0,0) 1 2 3 4 5 6 1 −1 1 1 3 2 −3 1 2 (1,1,0) 2 3 −2 2 t3 (3) t2 (2) Q= 1 2 4 3 −4 1 3 3 (0,2,0) 4 (1,0,1) 5 3 −5 2 1 6 3 −3 2 3 p3 (0,1,1) (0,0,2) 2 5 6 L 21 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  23. Laplace Transforms • We calculate the Laplace Transform (LT) of required re- sponse time density and then invert it numerically. • Laplace Transform of f ( t ) is � ∞ e − st f ( t ) dt L ( s ) = 0 • For f ( t ) = λe − λt � ∞ λe − ( λ + s ) t dt L ( s ) = 0 � ∞ 0 ( λ + s ) e − ( λ + s ) t dt = λ/ ( λ + s ) = λ/ ( λ + s ) 22 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  24. Why the Laplace domain L λ L λ � � ⇔ f ( t ) = λe − λt L ( s ) = λ + s Uniqueness 23 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  25. Why the Laplace domain L λ µ L � � � λ µ � L ( s ) = λ + s µ + s � t Convolution (easier than h ( t ) = f ( t ) ∗ g ( t ) = 0 f ( α ) g ( t − α ) dα !) 24 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  26. Why the Laplace domain L λ p (1−p) µ L � � λ µ � � L ( s ) = p + (1 − p ) λ + s µ + s Linearity 25 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  27. Why the Laplace domain L Uniform(a,b) Immediate Det(d) L e − as − e − bs � � � e − ds � L ( s ) = (1) ( b − a ) s Extensible to non-exponential time delays (SMCs) 26 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  28. Why the Laplace domain • Integration in t domain corresponds to division in Laplace domain. • By inverting L ( s ) /s instead of L ( s ) we obtain cumulative density function (cdf) cheaply. � ∞ � ∞ ∞ e − st f ( t ) dt = e − st F ( t ) � e − st F ( t ) dt L f ( t ) ( s ) = 0 + s � � 0 0 = sL F ( t ) ( s ) • Quantiles (percentiles) can be easily calculated from cdf. 27 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  29. Why the Laplace Domain • Calculating (raw) moments is straightforward: � ∞ L ′ ( s ) − te − st f ( t ) dt = 0 � ∞ L ′ (0) = − tf ( t ) dt 0 = − E [ T ] • Higher moments can be found via L ′′ (0), L ′′′ (0) etc. i.e. From the Laplace Transform, we can easily find the mean, variance, skewness, kurtosis etc. of f ( t ) 28 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  30. Response Time LT • First step analysis (source state i , target states � j ): � � � � � � � � q ik − q ii q ik − q ii � � L i� j ( s ) = L k� j ( s ) + − q ii s − q ii − q ii s − q ii ∈ � k ∈ � k/ j j � � � � q ik q ik � � = L k� j ( s ) + s − q ii s − q ii ∈ � k ∈ � k/ j j • With multiple source states: π k ˜ � L j ( s ) = α k L k� j ( s ) where α k = � i� i ˜ � π j � � j ∈ k ∈ i 29 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

  31. Response time LT • As a system of n linear equations in Ax = b form ( � j = 1):   L 1 � j ( s )     s − q 11 − q 12 · · · − q 1 n 0   L 2 � j ( s ) 0 s − q 22 · · · − q 2 n q 21                   0 − q 32 · · · − q 3 n L 3 � j ( s ) = q 31       . . . ...       . . . . 0 . . . . .             0 − q n 2 · · · s − q nn q n 1   L n� j ( s ) • Symbolic solution infeasible for large n . • Instead solve for particular values of s based on evaluation demands of numerical LT inversion algorithm. 30 Departmental Seminar wjk@doc.ic.ac.uk 10th December 2003

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend