linear quadratic optimal control for the oseen equations
play

Linear-quadratic optimal control for the Oseen equations with - PowerPoint PPT Presentation

Linear-quadratic optimal control for the Oseen equations with stabilized finite elements M. Braack 1 , B. Tews 1 1 Mathematical Seminar, University of Kiel, Germany Funded by the DFG Priority Program 1253 (Opt. PDE) Workshop on Numerical


  1. Linear-quadratic optimal control for the Oseen equations with stabilized finite elements M. Braack 1 , B. Tews 1 1 Mathematical Seminar, University of Kiel, Germany Funded by the DFG Priority Program 1253 (Opt. PDE) Workshop on Numerical Analysis of Singularly Perturbed Problems TU Dresden, November 16-18, 2011 1 / 18

  2. Outline Optimal control problem with Oseen system 1 A priori analysis for SUPG+PSPG and LPS 2 Numerical results 3 Summary 4 2 / 18

  3. 1. Optimal control problem Variables: v = velocity , p = pressure , u = control Spaces: 0 (Ω) d × L 2 u ∈ Q ⊂ L 2 (Ω) d (subspace) y := ( v , p ) ∈ X := H 1 0 (Ω) , Equation of state: − µ ∆ v + ( b · ∇ ) v + σ v + ∇ p + u = f in Ω ∇ · v = 0 in Ω v = 0 on ∂ Ω , Parameters: µ > 0 , σ ≥ 0 , div b = 0 Target functional: ( α ≥ 0) 1 0 + α 2 � v − v d � 2 2 � u � 2 J ( v , u ) := → min . 0 3 / 18

  4. Variational formulation Bilinear forms: A ( y , ϕ ) := ( ∇ · v , ξ ) + ( σ v , φ ) + (( b · ∇ ) v , φ ) + ( µ ∇ v , ∇ φ ) − ( p , ∇ · φ ) B ( u , φ ) := ( u , φ ) . Oseen state equation: A ( y , ϕ ) + B ( u , φ ) = � f , φ � ∀ ϕ = ( φ , ξ ) ∈ X . Lagrangian functional: L : X × Q × X → R with Lagrange multiplier z = ( z v , z p ) ∈ X , J ( y , u ) − A ( y , z ) − B ( u , z v ) + � f , z v � . L ( y , u , z ) := Necessary and sufficient condition for optimality: ∇L ( y , u , z ) = 0 4 / 18

  5. Karush-Kuhn-Tucker system State equation: ( ∂ z L ( y , u , z )( ψ ) ≡ 0) A ( y , ϕ ) + B ( u , φ ) = � f , φ � ∀ ϕ = ( φ , ξ ) ∈ X . Adjoint equation: ( ∂ y L ( y , u , z )( ψ ) ≡ 0) ( v − v d , ψ v ) ∀ ψ = ( ψ v , ψ p ) ∈ X A ( ψ , z ) = Gradient equation: ( ∂ u L ( y , u , z )( λ ) ≡ 0) B ( λ , z v ) α ( u , λ ) = ∀ λ ∈ Q . 5 / 18

  6. OD or DO ? OD = first optimize, than discretize DO = first discretize, than optimize We know: For non-symmetric stabilization (e.g., SUPG, PSPG): DO � = OD For symmetric stabilization (e.g., LPS, EOS): DO = OD Theoretical result for symmetric stabilization for Q r elements ( y , z ) and Q m elements ( u ) (Br. 2009): � u − u h � 0 � C ( α, σ, µ ) ( ε ( y ) + ε ( z ) + ε ( u )) with “ ” ε ( y ) 2 X L K h 2 r K � v � 2 r +1 , K + h 2 r +1 � p � 2 := r +1 , K K K ∈T h ε ( u ) 2 X h 2 m +2 � u � 2 := K m +1 , K K ∈T h µ + σ h 2 L K := K + h K � b � ∞ , K + h K 6 / 18

  7. 2. A priori analysis We want to know: Practical accuracy of symmetric stabilization Theoretical and practical accuracy of SUPG+PSPG for DO and OD Methods to be analyzed: SUPG+PSPG optimize-discretize 1 SUPG+PSPG discretize-optimize 2 LPS discretize-optimize=optimize-discretize 3 Mesh- and method-depending (semi-)norms: | 2 µ | v | 2 1 + σ � v � 2 0 + ρ � p � 2 | | | y | | := sd 0 � δ K � ( b · ∇ ) v + ∇ p � 2 0 , K + γ K �∇ · v � 2 + 0 , K K ∈T h | 2 µ | v | 2 1 + σ � v � 2 0 + S lps | | | y | | := h ( y , y ) lps Interpolation error: If y ∈ H r +1 (Ω) d +1 , | | | y − I h y | | | lps + | | | y − I h y | | | sd � ε ( y ) 7 / 18

  8. SUPG+PSPG optimize-discretize Theorem For enough regularity, it holds 1 + η 2 ε ( u ) + η 3 / 2 α ε ( y ( u h )) + η 1 / 2 � � � � � u − u h � 0 � α ε ( z ( y ( u h ))) α � − 1 � σ + µ η := . c Ω Proof. Using reduced functional j h ( u ) := J ( v h ( u ) , u ): α � u − u h � 2 j ′′ ≤ h ( u − u h , u − u h ) 0 j ′ h ( u )( u − u h ) − j ′ ( u h )( u − u h ) = j ′ h ( u )( u − u h ) − j ′ ( u )( u − u h ) = Using Gradient eq. α � u − u h � 2 � z v h − z v ( u h ) � 0 � I h u − u � 0 + � z v ( u h ) − z v � 0 � I h u − u � 0 � 0 + � z v ( u h ) − z v h � 0 � u h − u � 0 + α � u h − u � 0 � I h u − u � 0 Use now proper bounds for � z v ( u h ) − z v h � 0 . Important: Stable discretization of adjoint eq. 8 / 18

  9. SUPG+PSPG discretize-optimize Theorem For enough regularity, it holds λε ( z ) + λ (1 + η ) ε ( y ) + (1 + λη 3 / 2 ) | � u − u h � 0 � | u − I h u | | � 1 / 2 � � +( λ + α − 1 ) D 2 K ( z ) K ∈T h K � ( b · ∇ ) z v + ∇ z p � 0 , K , and λ := 1 with D K ( z ) := δ 1 / 2 α (1 + η ) 1 / 2 . Reason. Projection error of adjoint ω := I h z − z h : A ( ϕ , ω ) + S sd h , u =0 ( ϕ , ω ) 1 | 2 | | | ω | | ≤ β sup sd | | | ϕ | | | sd ϕ ∈ X h By perturbed Galerkin orthogonality in adjoint eq.: A ( ϕ , ω ) + S sd h , u =0 ( ϕ , ω ) = ( v − v h ( I h u ) , ϕ v ) − A ( ϕ , z − I h z ) + S sd h , u =0 ( ϕ , I h z ) 9 / 18

  10. Momentum residual: − µ ∆ ϕ v + ( b · ∇ ) ϕ v + σ ϕ v + ∇ ϕ p R ( ϕ ) := Stabilization term at zero control: R ( ϕ ) , ( b · ∇ ) I h z v + ∇ I h z p � � S sd ∇· ϕ v , ∇· I h z v � � � � � h , u =0 ( ϕ , I h z ) = δ K K + γ K K K ∈T h �� 1 / 2 � � � D 2 K ( I h z ) + h 2 l +1 | z v | | 2 ≤ | | | ϕ | | | sd | K l +1 , K K ∈T h Spurious term D 2 K ( I h z ) results from inconsistent discrete adjoint eq. K � ( b · ∇ ) z v + ∇ z p � 0 , K D K ( z ) := δ 1 / 2 10 / 18

  11. LPS LPS is symmetric ⇒ DO=OD Theorem For enough regularity, it holds � u − u h � 2 α − 2 η ( ε ( y ) + ε ( z )) + (1 + α − 2 ) ε ( u ) . � 0 11 / 18

  12. Qualitative comparison η ≤ 1 and λ � α − 1 / 2 σ ≥ 1 ⇒ ⇒ all stated a priori estimates become independent of If σ, α ≥ 1: SUPG discretize-optimize: � 1 / 2 � � D 2 � u − u h � 0 � ε ( y ) + ε ( z ) + ε ( u ) + K ( z ) K ∈T h SUPG optimize-discretize: � u − u h � 0 ε ( y ( u h )) + ε ( z ( y ( u h ))) + ε ( u ) � LPS: � u − u h � 0 � ε ( y ) + ε ( z ) + ε ( u ) 12 / 18

  13. 3. Numerical results Boundary conditions on unit square: v 1 = 0; n ) − pn 2 = 0 µ ( ∇ v 2 ,� on Γ S ∪ Γ N v 2 = 0; n ) − pn 1 = 0 µ ( ∇ v 1 ,� on Γ E ∪ Γ W . Exact solution y = ( v , p ): v 1 ( x , y ) = g ( y ) , v 2 ( x , y ) = g ( x ) , p = 0 , with viscosity-depending function (exponential layer, µ = 7 . 5 · 10 − 3 ) g ( x ) := x − 1 − e x /µ 1 − e 1 /µ . Adjoint state z = ( z v , z p ) and control u : z p = 0 z v , 1 ( x , y ) = g (1 − y ) , z v , 2 ( x , y ) = g (1 − x ) , u = − z v . SUPG+PSPG parameters: γ 0 = δ 0 = 0 . 2 13 / 18

  14. Errors and convergence orders with SUPG/PSPG Q1: h = � y − y h � � z − z h � � u − u h � j ( u ) − j h ( u h ) 2 − l � · � 0 order | | | · | | | sd order � · � 0 order | | | · | | | sd order � · � 0 order value order SUPG/PSPG Q1 optimize-discretize 3 2.65e-1 9.58e-1 2.68e-1 9.76e-1 1.89e-1 2.91e-2 4 1.50e-1 0.82 7.77e-1 0.30 1.50e-1 0.83 7.77e-1 0.33 1.06e-1 0.83 2.06e-2 0.50 5 6.62e-2 1.18 7.44e-1 0.06 6.62e-2 1.18 7.43e-1 0.06 4.68e-2 1.18 1.03e-2 1.00 6 2.42e-2 1.45 5.30e-1 0.49 2.42e-2 1.45 5.29e-1 0.49 1.71e-2 1.45 4.24e-3 1.28 7 8.15e-3 1.57 2.96e-1 0.84 8.15e-3 1.57 2.96e-1 0.84 5.76e-3 1.57 1.59e-3 1.42 SUPG/PSPG Q1 discretize-optimize 3 2.67e-1 9.55e-1 2.70e-1 9.70e-1 1.52e-1 4.33e-2 4 1.50e-1 0.83 7.77e-1 0.30 1.51e-1 0.84 7.78e-1 0.32 7.85e-2 0.95 2.53e-2 0.78 5 6.61e-2 1.19 7.44e-1 0.06 6.65e-2 1.19 7.44e-1 0.06 2.86e-2 1.46 1.17e-2 1.12 6 2.42e-2 1.45 5.30e-1 0.49 2.43e-2 1.45 5.30e-1 0.49 6.62e-3 2.11 4.58e-3 1.35 7 8.11e-3 1.58 2.96e-1 0.84 8.16e-3 1.57 2.96e-1 0.84 1.52e-3 2.12 1.65e-3 1.47 14 / 18

  15. Errors and convergence orders with SUPG/PSPG Q2: h = � y − y h � � z − z h � � u − u h � j ( u ) − j h ( u h ) 2 − l � · � 0 order | | | · | | | sd order � · � 0 order | | | · | | | sd order � · � 0 order value order SUPG/PSPG Q2 optimize-discretize 3 1.91e-1 7.52e-1 1.89e-1 7.47e-1 1.34e-1 6.59e-2 4 9.86e-2 0.96 9.67e-1 -0.36 9.77e-2 0.95 9.66e-1 -0.37 6.91e-2 0.95 3.22e-2 1.03 5 4.05e-2 1.29 6.27e-1 0.63 4.00e-2 1.29 6.26e-1 0.63 2.83e-2 1.29 1.17e-2 1.26 6 1.06e-2 1.93 2.32e-1 1.44 1.03e-2 1.95 2.31e-1 1.44 7.32e-3 1.95 2.62e-3 2.16 7 1.69e-3 2.65 5.68e-2 2.03 1.55e-3 2.74 5.68e-2 2.03 1.09e-3 2.75 2.54e-4 3.37 SUPG/PSPG Q2 discretize-optimize 3 1.89e-1 7.50e-1 2.20e-1 1.68e+0 9.01e-2 8.05e-2 4 9.74e-2 0.95 9.66e-1 -0.37 1.29e-1 0.77 1.62e+0 0.05 4.49e-2 1.01 3.83e-2 1.07 5 4.01e-2 1.28 6.26e-1 0.63 7.54e-2 0.78 1.52e+0 0.09 2.59e-2 0.80 1.35e-2 1.50 6 1.05e-2 1.93 2.32e-1 1.44 3.76e-2 1.00 1.20e+0 0.34 1.31e-2 0.98 3.00e-3 2.17 7 1.66e-3 2.66 5.58e-2 2.03 1.48e-2 1.35 7.86e-1 0.62 5.27e-3 1.32 3.18e-4 3.24 15 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend