stochastic optimal control problems in banach spaces
play

Stochastic optimal control problems in Banach spaces Federica - PowerPoint PPT Presentation

Stochastic optimal control problems in Banach spaces Federica Masiero Universit` a Milano Bicocca La Londe 9-14 September 2007 PLAN 1. SDEs in Banach spaces; 2. The forward-backward system; 3. Identification of Z; 4. The optimal control


  1. Stochastic optimal control problems in Banach spaces Federica Masiero Universit` a Milano Bicocca La Londe 9-14 September 2007

  2. PLAN 1. SDEs in Banach spaces; 2. The forward-backward system; 3. Identification of Z; 4. The optimal control problem; 5. The Hamilton Jacobi Bellman equation; 6. The case of arbitrarly growing coefficents; 7. Bibliographycal comments; 8. Application to nonlinear stochastic heat equations; 9. Application to stochastic delay equations. 1

  3. SDEs in Banach spaces Our framework SDE with values in E ⊂ H , E Banach, H Hilbert � dX τ = [ AX τ + F ( X τ )] dτ + GdW τ , τ ∈ [ t, T ] X t = x, 0 ≤ t ≤ T. Theorem 1: If Hypothesis 1 is satisfied, there exists a unique mild solution X ( τ, t, x ), that is an adapted and continuous E -valued process satisfying P -a.s. � τ � τ X τ = e ( τ − t ) A x + e ( τ − s ) A F ( X s ) ds + e ( τ − s ) A GdW s , τ ∈ [ t, T ] . t t Proof: See e.g. Da Prato and Zabczyk (1992, 1996). 2

  4. SDEs in Banach spaces Hypothesis 1 1. A generates a C 0 semigroup e tA , t ≥ 0 , in E , and there exists ω ∈ R such � � e tA � L ( E,E ) ≤ e ωt , for all t ≥ 0. e tA , t ≥ 0 extends to a C 0 semigroup that � of bounded linear operators in H . 2. F : E → E continuous and ∃ η ≥ 0 s.t. A + F − ηI is dissipative in E . � σ e sA GG ∗ e sA ∗ ds is a trace class operator in H . 3. G ∈ L (Ξ , H ) and Q σ = 0 4. W cylindrical Wiener process in Ξ and W A ( τ ) = � τ t e ( τ − s ) A GdW s admits an E -continuous version. 3

  5. SDEs in Banach spaces Regularity with respect to the initial datum Let H p ([0 , T ] , E ) = � predictable processes: E sup τ ∈ [0 ,T ] | X τ | p E < ∞ � . • X ( τ, t, x ) is Lipschitz in x uniformly with respect to τ : � X ( τ, t, x 1 ) − X ( τ, t, x 2 ) � E ≤ e | η | T � x 1 − x 2 � E • If F is Gateaux differentiable in E , X ( τ, t, · ) is pathwise differentiable. � � 1 + � x � k • Assume that ∃ k ≥ 0 s.t. � F ( x ) � E ≤ c ⇒ E 1. ( X ( τ, t, x )) τ ∈ [0 ,T ] ∈ H p ([0 , T ] , E ) 2. the map x �→ ( X ( τ, t, x )) τ ∈ [0 ,T ] from E to H p ([0 , T ] , E ) is Gateaux differ- entiable. 4

  6. The forward-backward system Forward-backward system  dX τ = AX τ dτ + F ( X τ ) dτ + GdW τ , τ ∈ [ t, T ]  dY τ = − ψ ( τ, X τ , Z τ ) dτ + Z τ dW τ , τ ∈ [ t, T ]  X t = x,   Y T = φ ( X T ) . Hypothesis 2: • For every σ ∈ [0 , T ], x ∈ E and z 1 , z 2 ∈ Ξ ∗ | ψ ( σ, x, z 1 ) − ψ ( σ, x, z 2 ) | ≤ L | z 1 − z 2 | Ξ ∗ . • For every σ ∈ [0 , T ] ψ ( σ, · , · ) ∈ G 1 , 1 ( E × Ξ ∗ ) and for every σ ∈ [0 , T ], x, h ∈ E and z ∈ Ξ ∗ � m � � � |∇ x ψ ( σ, x, z ) h | ≤ L � h � E 1 + � x � E 1 + | z | Ξ ∗ . • φ ∈ G 1 ( E ) and lipschitz continuous on E . � � • F ∈ G 1 ( E ) and ∃ k ≥ 0 s.t. � F ( x ) � E ≤ c 1 + � x � k . E 5

  7. The forward-backward system Proposition Let hypotheses 1 and 2 hold true. Then the BSDE admits a unique solution ( Y, Z ) ∈ K cont ([0 , T ]) and the map ( t, x ) �→ ( Y ( · , t, x ) , Z ( · , t, x )) belongs to G 0 , 1 ([0 , T ] × E, K cont ([0 , T ])). The following estimates holds true: for every p ≥ 2, � 1 /p � � 2 � 1 + � x � ( m +1) |∇ x Y ( τ, t, x ) h | p E sup ≤ C � h � E . E τ ∈ [0 ,T ] Corollary Let hypotheses 1 and 2 hold true. Then the function v ( t, x ) := Y ( t, t, x ) belongs to G 0 , 1 ([0 , T ] × E, R ) and there exists C > 0 such that � 2 � 1 + � x � ( m +1) |∇ x v ( t, x ) h | ≤ C � h � E for all t ∈ [0 , T ], x, h ∈ E . E 6

  8. Identification of Z Theorem 2 Let hypotheses 1 and 2 hold true and set v ( t, x ) := Y ( t, t, x ), Then, for almost every s ∈ [0 , T ], Z s ξ = ∇ v ( s, X s ) Gξ , P -almost everywhere and for every ξ ∈ Ξ 0 . Main technical result. The argument generalizes the one in Bismut, Martin- gales, the Malliavin calculus and hypoellipticity under general H¨ ormander’s conditions . Z. Wahrsch. Verw. Gebiete (1981). More in general it holds true for v ∈ G 0 , 1 ([0 , T ] × E, R ) satisfying � T � T v ( τ, X τ ) = v ( T, X T ) + ψ σ dσ − Z σ dW σ , τ ∈ [ t, T ] . τ τ 7

  9. Identification of Z Hypothesis Assume there exists a Banach subspace Ξ 0 dense in Ξ s.t. G (Ξ 0 ) ⊂ E and G : Ξ 0 − → E is continuous. Theorem 2: Let X be solution of the SDE, Z and ψ be square integrable processes. Let v ∈ G 0 , 1 ([0 , T ] × E ) s.t. for every 0 ≤ t ≤ s ≤ T , |∇ v ( s, x ) h | ≤ � � 1 + � x � j c � h � E , for some integer j ≥ 0 and for every x, h ∈ E. If E � T � T v ( t, x ) + Z σ dW σ = v ( T, X T ) + ψ σ dσ, t t then, for almost every s ∈ [0 , T ], Z s ξ = ∇ v ( s, X s ) Gξ , P -almost everywhere and for every ξ ∈ Ξ 0 . Remark Since Ξ 0 is dense in Ξ, for every ¯ ξ ∈ Ξ there exists a sequence → ¯ ( ξ n ) n ∈ Ξ 0 such that ξ n − ξ in Ξ. For almost every s ∈ [0 , T ] and almost surely with respect to the law of X s , the operator ∇ v ( s, x ) G : Ξ 0 − → E extends to an operator defined in the whole Ξ. So Z s = ∇ v ( s, X s ) G , P -almost surely and for almost every s ∈ [0 , T ] . 8

  10. Identification of Z Proof: Let η be a bounded and predictable process with the following form: let � kT � � kT � 2 n , ( k + 1) T 2 n , ( k + 1) T , k = 0 , .... 2 n − 1 be a partition [0 , T ]. For t ∈ 2 n 2 n � kT � 2 n , ( k + 1) T , 0 ≤ t 1 ≤ ... ≤ t l k ≤ kT 2 n , η k ∈ C ∞ η t = η k � b ( R l k , R ) . � W t 1 , ..., W t lk , t ∈ 2 n For ς ∈ Ξ 0 , set ξ t = η t ς . Notation: ξ t = ξ t ( W · ), where ( W · ) is the trajectory of W up to time t . (see Bismut). 9

  11. Identification of Z � T � T v ( s, X ( s, t, x )) + Z σ dW σ = v ( T, X T ) + ψ σ dσ s s and ,for t ≤ s ≤ T , � s � s v ( s, X ( s, t, x )) = v ( t, x ) + Z σ dW σ − ψ σ dσ. t t � s �� s − δ � s � � � ξ ∗ ξ ∗ E v ( s, X s ) σ dW σ = − E ψ σ dσ σ dW σ s − δ t s − δ �� s � s �� s � s � � ξ ∗ ξ ∗ + E − E ψ σ dσ σ dW σ Z σ dW σ σ dW σ . s − δ s − δ t s − δ ⇓ � s � � 1 ξ ∗ E [ Z s ξ s ] = lim v ( s, X s ) δ E σ dW σ . δ → 0 s − δ 10

  12. Identification of Z Prove that � s � � 1 ξ ∗ lim v ( s, X s ) = E [ ∇ v ( s, X s ) Gξ s ] . δ E σ dW σ δ → 0 s − δ Following Bismut, � σ W ε ξ r ( W ε σ = W σ − ε · ) dr, t W ε σ = W ε σ ( W · ). So � σ W ε ξ r ( W ε σ = W σ − ε · ( W · )) dr, 0 ≤ t ≤ σ ≤ T. t and � σ d dε | ε =0 W ε σ = ξ r ( W · ) dr. t 11

  13. Identification of Z Let � T � T · ( W · )) dW σ − ε 2 � � dQ ε · ( W · )) | 2 dσ ξ ∗ σ ( W ε | ξ σ ( W ε d P = exp ε 2 t t By dominated convergence � s � s � s σ dW σ − ε 2 � � � � �� = d | ξ σ | 2 dσ ξ ∗ ξ ∗ v ( s, X s ) σ dW σ v ( s, X s ) exp ε E dε | ε =0 E 2 t t t = d dε | ε =0 E Q ε [ v ( s, X s )] . 12

  14. Identification of Z Under Q ε X solves � dX τ = AX τ dτ + F ( X τ ) dτ + Gεξ τ dτ + GdW ε τ , τ ∈ [ s − δ, T ] X s − δ = X ( s − δ, t, x ) . Under P X ε solves � dX ε τ = AX ε τ dτ + F ( X ε τ ) dτ + Gεξ τ dτ + GdW τ , τ ∈ [ s − δ, T ] X ε t = X ( s − δ, t, x ) . ⇓ � � dε | ε =0 E Q ε [ v ( s, X s )] = d d · dε | ε =0 E [ v ( s, X ε s )] = E ∇ v ( s, X s ) X s 13

  15. Identification of Z · · · � X τ = A X τ dτ + ∇ F ( X τ ) X τ dτ + Gξ τ dτ, τ ∈ [ s − δ, T ] d · X s − δ = 0 . · X τ = � τ claim: t ∇ X ( τ, σ, X ( σ, t, x )) Gξ σ dσ ⇓ � s � � 1 ξ ∗ E [ Z s ξ s ] = lim ∇ v ( s, X s ) σ dW σ δ E δ → 0 s − δ � s � � 1 = lim δ E ∇ v ( s, X s ) ∇ X ( s, σ, X ( σ, t, x )) Gξ σ dσ δ → 0 s − δ = E [ ∇ v ( s, X s ) ∇ X ( s, s, X ( s, t, x )) Gξ s ] = E [ ∇ v ( s, X s ) Gξ s ] . 14

  16. The optimal control problem The optimal control problem: weak formulation controlled SDE � dX u τ = [ AX u τ + F ( X u τ ) + GR ( τ, X u τ , u τ )] dτ + GdW τ X u t = x ∈ E, τ ∈ [ t, T ] . u ∈ L 2 P (Ω × [0 , T ] , U ) . Cost functional and value function A = (Ω , F , F τ , P , W, u, X u ) admissible control system (a.c.s.). � T g ( s, X u s , u s ) ds + E φ ( X u J ( t, x, A ) = E T ) , t J ∗ ( t, x ) = inf A J ( t, x, A ) . 15

  17. The optimal control problem Hypothesis 3: R : [0 , T ] × H × U − → Ξ measurable. ∀ τ ∈ [0 , T ] , | R ( τ, x, u ) | ≤ K R . φ ∈ G 1 ( E ) and lipschitz continuous on E . g : [0 , T ] × E × U − → R , continuous. ∃ K > 0 s.t. for j ≥ 0, for every x ∈ E � � 1 + � x � j | g ( τ, x, u ) | ≤ K . E Weak formulation of the optimal control problem (see e.g. Fleming-Soner � � 1993): find an a.c.s. A s.t. J t, x, A ≤ J ( t, x, A ) for every a.c.s. A . Then A is optimal. 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend