let x 1 x 2 x n be a random sample from a normal
play

Let X 1 , X 2 , . . . , X n be a random sample from a normal - PDF document

Lecture 30: Confidence Intervals for 2 0/ 14 Today we will discuss the material in Section 7.4. Let X 1 , X 2 , . . . , X n be a random sample from a normal population with mean and variance 2 . In this lecture we want to construct a 100


  1. Lecture 30: Confidence Intervals for σ 2 0/ 14

  2. Today we will discuss the material in Section 7.4. Let X 1 , X 2 , . . . , X n be a random sample from a normal population with mean µ and variance σ 2 . In this lecture we want to construct a 100 ( 1 − α )% confidence for σ 2 . We recall that S 2 is a point estimator for σ 2 . 1/ 14 Lecture 30: Confidence Intervals for σ 2

  3. What is new here is that we are going to note a “ multiplicative confidence interval ”. Here is the idea. We want a random interval that has the point estimator S 2 in the interior Now given a number x there are two ways to make an interval I ( x ) that has x in its interior. 1. The additive method Choose two positive numbers c 1 and c 2 . Put I ( x ) = ( x − c 1 , x + c 2 ) . 2. The multiplicative method Choose a number c 1 < 1 and another number c 1 > 1. Put I ( x ) = ( c 1 x , c 2 x ) . 2/ 14 Lecture 30: Confidence Intervals for σ 2

  4. We will use the second method now. The clue to why we do this is that S 2 > 0. First we need to know the probability distribution of the point estimator S 2 . We have already seen this Theorem A (pg 278) � n − 1 � S 2 ∼ χ 2 ( n − 1 ) V = ( ∗ ) σ 2 Now we can give the confidence interval. Theorem B   n − 1 n − 1    S 2 , S 2  The random interval    is a 100 ( 1 − α )% confidence     χ 2 χ 2  α/ 2 , n − 1 1 − α/ 2 , n − 1 random interval for the population variance σ 2 from a normal population. 3/ 14 Lecture 30: Confidence Intervals for σ 2

  5. Remark It must be true (see page 2) that n − 1 c 1 = < 1 and χ 2 α/ 2 , n − 1 n − 1 c 2 = > 1 . χ 2 1 − α/ 2 , n − 1 I have never checked this. Now we prove Theorem B. We must prove     n − 1 n − 1      σ 2 ∈   S 2 , S 2    = 1 P             χ 2 χ 2   α/ 2 , n − 1 1 − α/ 2 , n − 1   n − 1 n − 1   S 2 < σ 2 , σ 2 <  S 2  LHS = P       χ 2 χ 2   α/ 2 , n − 1 1 − α/ 2 , n − 1 4/ 14 Lecture 30: Confidence Intervals for σ 2

  6. Remark Now we manipulate the two resulting inequalities to get V so we can sue ( ∗ ) Swap and make a V MAKE A PICTURE = the shaded area 5/ 14 Lecture 30: Confidence Intervals for σ 2

  7. Remark (Cont.) = 1 − ( α / 2 + α / 2 ) = 1 − α 6/ 14 Lecture 30: Confidence Intervals for σ 2

  8. Question 2 , n − 1? This is because the χ 2 density curve Why do we need the strange χ 2 1 − α / does not have the symmetry that the z -density and t -densities did. In all three coses we need something that cut off α / 2 on the left under the density curve so 1 − α / 2 on the right . For the z -curve − z α / 2 did the job. In other words 7/ 14 Lecture 30: Confidence Intervals for σ 2

  9. Lemma z 1 − α / 2 = − z α / 2 Proof. 2 = z 1 − α / so − z α / 2 cots off 1 − α / 2 to the right to − z α / � 2 8/ 14 Lecture 30: Confidence Intervals for σ 2

  10. The Upper-Tailed 100 ( 1 − α )% Confidence Interrol for σ 2 Theorem   n − 1     S 2 , ∞  is a 100 ( 1 − α )% confidence interrol for σ 2       χ 2  α, n − 1 Proof. If could be on the final - do it yourself. � Remark As used we took the lower limit from the two-sided interval and changed α / 2 to α . 9/ 14 Lecture 30: Confidence Intervals for σ 2

  11. The Lower-Tailed 100 ( 1 − α )% Confidence Interval for σ 2 Since S 2 is always positive PCS 2 ∈ ( −∞ , 01 ) = 0 so the negative axis will not appear. Lower tailed multiplication intervals go down to 0 not −∞ . Another (philosophical) way to look at it is. e x additive group of R multiplicative group of of positive −→ ( −∞ , ∞ ) numbers, ( 0 , ∞ ) � ������������ �� ������������ � � ��������������������������� �� ��������������������������� � additive world multiplicative world We are in the multiplicative world. 10/ 14 Lecture 30: Confidence Intervals for σ 2

  12. Theorem   n − 1    S 2  is a 100 ( 1 − α )% confidence interval for σ 2 .    0 ,      χ 2 1 − α, n − 1 Proof. Do it yourself � Remark   n − 1    is also a 100 ( 1 − α )% confidence interval for σ 2 but the   S 2  −∞ ,       χ 2 1 − α, n − 1 ( −∞ , 0 ) is “wasted space”, Remember, small intervals or better. 11/ 14 Lecture 30: Confidence Intervals for σ 2

  13. Confidence Intervals for the standard Deviation Note that if a > 0, b > 0 and x > 0 then √ a ≤ × ≤ b ↔ √ √ a ≤ x ≤ b so n − 1 n − 1 S 2 ≤ σ 2 ≤ S 2 χ 2 χ 2 α / 2 , n − 1 1 − α / 2 , n − 1 � � n − 1 n − 1 S ≤ σ ≤ S ⇔ χ 2 χ 2 2 , n − 1 1 − α / 2 , n − 1 α / Hence     � � n − 1 n − 1 n − 1 n − 1        S 2 ≤ σ 2 ≤  S 2     S < σ < S  = P          χ 2 χ 2   χ 2 χ 2     α / 2 , n − 1 1 − α / 2 , n − 1 α / 2 , n − 1 1 − α / 2 , n − 1 from pg3 = 1 − α 12/ 14 Lecture 30: Confidence Intervals for σ 2

  14. In other words     � � n − 1 n − 1              = 1 − α P  σ ∈ S , S           χ 2 χ 2     α / 2 , n − 1 1 − α / 2 , n − 1 and we have Theorem The random interval   � � n − 1 n − 1       S , S       χ 2 χ 2   2 , n − 1 1 − α / 2 , n − 1 α / is a 100 ( 1 − α )% confidence interval for the standard deviation σ in a normal population. 13/ 14 Lecture 30: Confidence Intervals for σ 2

  15. Problem Write down the upper and lower-tailed confidence intervals for σ . (hint: just take the square notes of the end points of those for σ 2 ) 14/ 14 Lecture 30: Confidence Intervals for σ 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend