lessons learned from the theory and practice of
play

Lessons learned from the theory and practice of Simulated data - One - PowerPoint PPT Presentation

Lessons learned from the theory and practice of Simulated data - One change (Signal and spectral densities) 2 change detection 1 0 -1 -2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Mich` ele Basseville 10 10 0 0 IRISA /


  1. Lessons learned from the theory and practice of Simulated data - One change (Signal and spectral densities) 2 change detection 1 0 -1 -2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Mich` ele Basseville 10 10 0 0 IRISA / CNRS, Rennes, France -10 -10 -20 -20 -30 -30 -40 -40 michele.basseville@irisa.fr -- http://www.irisa.fr/sisthem/ 0 0.5 0 0.5 1 2 Introduction • Detection of changes Content – Stochastic models (static, dynamic) ← → uncertainties Changes in the mean – Parameterized models (physical interpretation, diagnostics) Changes in the spectrum – Damage ← → deviation in the parameter vector • Many changes of interest are small Changes in the system dynamics and vibration-based SHM • Early detection of (small) deviations is useful Example: flutter monitoring • Key issue (1): which function of the data should be handled? • Key issue (2): how to make the decision? 3 4

  2. Changes in the mean Hypothesis testing Hypotheses H 0 H 1 Key concepts - Independent data Simple θ 0 θ 1 Known parameter values Likelihood p θ ( y i ) Composite Θ 0 Θ 1 Unknown parameter values ln p θ 1 ( y i ) ∆ Simple hypotheses : Likelihood ratio test Log-likelihood ratio s i = p θ 0 ( y i ) If Λ N ≥ λ / S N ≥ h : decide H 1 , H 0 otherwise E θ 0 ( s i ) < 0 E θ 1 ( s i ) > 0 Composite hypotheses : Generalized likelihood ratio (GLR) p θ 1 ( Y N � 1 ) i p θ 1 ( y i ) θ 1 ( Y N = sup θ 1 ∈ Θ 1 p θ 1 ( Y N p � 1 ) ∆ 1 ) Likelihood ratio Λ N = 1 ) = � Λ N 1 ) = p θ 0 ( Y N � i p θ 0 ( y i ) sup θ 0 ∈ Θ 0 p θ 0 ( Y N θ 0 ( Y N p � 1 ) ∆ � N Log-likelihood ratio S N = ln Λ N = i =1 s i Maximize the likelihoods w.r.t. unknown values of θ 0 and θ 1 5 6 On-line change detection, unknown onset time Simple case: Known θ 1 - CUSUM algorithm θ o θ 1 t Ratio of likelihoods under H 0 and H 1 : o � t 0 − 1 n � k � k 1 ? p θ 0 ( y i ) · i = t 0 p θ 1 ( y i ) i = t 0 p θ 1 ( y i ) i =1 = Λ k = t 0 � k � k i =1 p θ 0 ( y i ) i = t 0 p θ 0 ( y i ) Hypothesis H 0 θ = θ 0 (1 ≤ i ≤ k ) known Maximize over the unknown onset time t 0 : j − 1 k ∆  � � � i =1 p θ 0 ( y i ) · ( t 0 ) k = arg max i = j p θ 1 ( y i )  θ 0 (1 ≤ i < t 0 )    1 ≤ j ≤ k    Hypothesis H 1 ∃ t 0 s.t. θ =     θ 1 ( t 0 ≤ i ≤ k )  Λ k   = arg max j 1 ≤ j ≤ k S k S k j = ln Λ k = arg max j , j 1 ≤ j ≤ k t a = min { k ≥ 1 : g k ≥ h } decision function Alarm time t a : ∆ 1 ≤ j ≤ k S k = ln Λ k g k = max � Estimated onset time: t 0 j ˆ t 0 7 8

  3. CUSUM algorithm (Contd.) Lesson 1 CUSUM algorithm (Contd.) - Gaussian example    − ( y i − µ ) 2 1 ∆ 1 ≤ j ≤ k S k g k = max θ ∆ p θ ( y ) ∆ N ( µ, σ 2 ) ,   √   = µ, = 2 π exp j   2 σ 2  σ 1 ≤ j ≤ k S j 1 ≤ j ≤ k S j S k 1 = S k ∆ = 1 − min 1 − m k , m k = min 1 ln p µ 1 ( y i ) s i = p µ 0 ( y i ) min { k ≥ 1 : S k 1 ≥ m k + h } t a = Adaptative threshold 1 � � ( y i − µ 0 ) 2 − ( y i − µ 1 ) 2 = 2 σ 2 ( g k − 1 + s k ) + g k =   ν  y i − µ 0 − ν  , ν = µ 1 − µ 0 =   σ 2 2 � � + , ∆ S k = N k − 1 · I ( g k − 1 ) + 1 g k = N k k − N k +1 k S k � involves i =1 y i : Integrator (with adaptive threshold) � t a − N t a + 1 1 ( t 0 ) k = Sliding window with adaptive size 9 10 Composite case: Unknown θ 1 CUSUM algorithm - Gaussian example (Contd.) 7 6 Modified CUSUM algorithms 5 4 3 2 1 Minimum magnitude of change 0 -1 -2 -3 0 5 10 15 20 25 30 35 40 45 50 y k Weighted CUSUM 10 0 -10 -20 GLR algorithm -30 -40 -50 S k 0 5 10 15 20 25 30 35 40 45 50 Double maximization 1 90 80 70 60 50 S k g k = max sup j ( θ 1 ) 40 1 ≤ j ≤ k 30 θ 1 20 10 0 0 5 10 15 20 25 30 35 40 45 50 g k Gaussian case, additive faults: second maximization explicit. 11 12

  4. Changes in the spectrum Unknown θ 1 - Gaussian example (Contd.) Key concepts - Dependent data Minimum magnitude of change ν m Lesson 2 Conditional likelihood p θ ( y i |Y i − 1 ) 1 Decreasing mean Increasing mean ln p θ 1 ( y i |Y i − 1 ) ∆ 1 Log-likelihood ratio s i = p θ 0 ( y i |Y i − 1 ) 1      y i − µ 0 + ν m  y i − µ 0 − ν m ∆ ∆ T k � k U k � k =   =     1 i =1 1 i =1 2 2 E θ 0 ( s i ) < 0 E θ 1 ( s i ) > 0 ∆ = max 1 ≤ j ≤ k T j = min 1 ≤ j ≤ k U j ∆ M k m k 1 1 i p θ 1 ( y i |Y i − 1 p θ 1 ( Y N � 1 ) ) ∆ 1 Likelihood ratio Λ N = = i p θ 0 ( y i |Y i − 1 p θ 0 ( Y N � 1 ) ) t a = min { k ≥ 1 : M k − T k t a = min { k ≥ 1 : U k 1 1 ≥ h } 1 − m k ≥ h } ∆ � N Log-likelihood ratio S N = ln Λ N = i =1 s i 13 14 Key concepts - Dependent data (Contd.) Key concepts - Dependent data (Contd.) θ 0 : reference parameter, known (or identified) Which residuals? Lesson 3 Y k : N -size sample of new measurements • Likelihood ratio computationally complex Build a residual ζ significantly non zero when damage • Efficient score : likelihood sensitivity w.r.t. parameter vector Residual ↔ Estimating function ζ N ( θ, Y N 1 ) • Other estimating fonctions Characterized by : E θ 0 ζ N ( θ, Y N ⇐ ⇒ 1 ) = 0 θ = θ 0 Innovation not sufficient for monitoring the dynamics. Mean sensitivity J ( θ 0 ) and covariance Σ( θ 0 ) of ζ N ( θ 0 ) 15 16

  5. Key concepts - Dependent data (Contd.) Changes in the dynamics and vibration-based SHM The residual is asymptotically Gaussian Structural monitoring : Eigenstructure monitoring  N (  0 , Σ( θ 0 )) if P θ 0         ζ N ( θ 0 ) →   N ( J ( θ 0 ) δθ, Σ( θ 0 ))  if P θ 0 + δθ small deviations     √   N  X k +1 = F X k + V k F Φ λ = λ Φ λ           (On-board) χ 2 -test in the residual     ∆    Y k = H X k ϕ λ = H Φ λ    N Σ − 1 J ( J T Σ − 1 J ) − 1 J T Σ − 1 ζ N ζ T ≥ h   Λ modes θ ∆   Canonical parameter : =      vec Φ  mode shapes Noises and uncertainty on θ 0 taken into account. 17 18 Example: flutter monitoring Detecting structural changes Monitoring a damping coefficient • Reference data → covariances → Hankel matrix H 0 • Test ρ ≥ ρ c against ρ < ρ c Left null space S s.t. S T H 0 = 0 ( S T O ( θ 0 ) = 0 ) • Write the subspace-based residual ζ • Fresh data → covariances → Hankel matrix H 1 as a cumulative sum = S T H 1 � = 0 Check if ζ ∆ • Introduce a minimum change magnitude (actual change magnitude unknown) ζ asympt. Gaussian, test: χ 2 in ζ • Run two CUSUM tests in parallel (actual change direction unknown) 19 20

  6. Flutter monitoring (Contd) Application to real datasets Ariane booster launcher during a launch scenario on the ground (not during a real flight test) Running the test with 2 critical values With Laurent M´ evel, Maurice Goursat, Albert Benveniste Free COSMAD Toolbox to used with Scilab http://www.irisa.fr/sisthem/cosmad/ Automatic identification. Each symbol: processing 5 sec. data. 21 22 Conclusion Advanced statistical signal processing mandatory for SHM A statistical framework enlightens the meaning and On-line test for ρ c = ρ 0 = ρ (1) . c increases the power of a number of familiar operations integration, averaging, sensitivity, adaptive thresholds & windows Change detection useful for (vibration-based) SHM Current investigations On-line test for ρ c = ρ 0 = ρ (2) < ρ (1) . c c • flutter monitoring (with Dassault, Airbus), Bottom: − g − n reflects ρ < ρ c . Top: g + • handling the temperature effect on civil structures (with LCPC) n reflects ρ > ρ c . 23 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend